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TRIPLE SOLUTIONS FOR THREE-ORDER PERIODIC

BOUNDARY VALUE PROBLEMS WITH SIGN CHANGING

NONLINEARITY†

HUIXUAN TAN∗, HANYING FENG, XINGFANG FENG, YATAO DU

Abstract. In this paper, we consider the periodic boundary value problem
with sign changing nonlinearity

u′′′ + ρ3u = f(t, u), t ∈ [0, 2π],

subject to the boundary value conditions:

u(i)(0) = u(i)(2π), i = 0, 1, 2,

where ρ ∈ (0, 1√
3
) is a positive constant and f(t, u) is a continuous func-

tion. Using Leggett-Williams fixed point theorem, we provide sufficient

conditions for the existence of at least three positive solutions to the above
boundary value problem. The interesting point is the nonlinear term f
may change sign.
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1. Introduction

In this paper, we are concerned with the multiplicity of positive solutions of
the nonlinear three-order periodic boundary value problem{

u′′′ + ρ3u = f(t, u), t ∈ [0, 2π],
u(i)(0) = u(i)(2π), i = 0, 1, 2,

(1)

throughout this paper, we assume that
(H1) ρ ∈ (0, 1√

3
), f : [0, 2π] × [0,∞] → R is continuous and there exists a

constant L > 0 such that F (t, u) := f(t, u)+L > 0 for all (t, u) ∈ [0, 2π]× [0,∞];
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(H2)There exist continuous, non-negative and non-decreasing functions g(x),
h(x) on (0,∞) such that g(x) ≤ f(t, x) + L ≤ h(x).

Nonlinear periodic boundary value problem have been extensively studied by
many authors. The existence of solutions is one of the most important aspects
of periodic boundary value problem(see[1]-[7],[9]-[17] and references therein). In
recent years, many authors take more interested in the two-order or four-order
periodic boundary value problem ([4],[11],[13]-[17]). However, for three-order
periodic boundary value problems , a few of authors have studied ([9],[10],[12]).
For the periodic boundary value problem (1), different methods and techniques
have been employed to discuss the existence of positive solutions. We recall the
following three results. In [12], Kong and Wang, by employing Schauder fixed
point theorem together with priori estimates and perturbation technique, estab-
lished the existence of at least one positive solution under suitable conditions of
f . In [9], by using Krasnoselskii fixed point theorem together with non-linear
alternative of Leray-Schauder, the existence of positive periodic solutions have
been discussed. Recently, In [10], Yao obtained existence results for singular
and multiple positive periodic solutions by applying Guo-Lakshmikantham fixed
point index theory for cones.

Inspired and motivated by the work mentioned above, in this paper, we shall
apply Leggett-Williams fixed point theorem to investigate the existence of at
least three positive periodic solutions to (1). The interesting point is the non-
linear term f may change sign.

2. Background and definitions

The proof of our main result is based on the Leggett-Williams fixed-point
theorem, which deals with fixed points of a cone-preserving operator defined on
an ordered Banach space. For the convenience of readers, we present here the
necessary definitions from cone theory in Banach spaces. These definitions can
be found in the recent literature.

Definition 2.1. Let E be a real Banach space over R. A nonempty closed set
P ⊂ E is said to be a cone provided that
(i) αu+ βv ∈ P for all u, v ∈ P and all α ≥ 0, β ≥ 0, and
(ii) u,−u ∈ P implies u = 0.

If P ⊂ E is a cone, we denote the order induced by P on E by ≤. For
u, v ∈ P , we write u ≤ v if and only if v − u ∈ P .

Definition 2.2. The map ψ is said to be a nonnegative continuous concave
functional on a cone P of a real Banach space E provided that ψ : P → [0,∞)
is continuous and

ψ(tx+ (1− t)y) ≥ tψ(x) + (1− t)ψ(y)

for all x, y ∈ P and 0 ≤ t ≤ 1.
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Definition 2.3. Let 0 < a < b be given and let ψ be a nonnegative continuous
concave functional on the cone P . Define the sets Pa, P a and P (ψ, a, b) by

Pa = {x ∈ P | ∥x∥ < a}, P a = {x ∈ P | ∥x∥ ≤ a},

P (ψ, a, b) = {x ∈ P | a ≤ ψ(x), ∥x∥ ≤ b}.

Next we state the Leggett-Williams fixed-point theorem. The proof can be
found in Deimling’s text [8].

Theorem 2.4 (Leggett-Williams Fixed-Point Theorem). Let E = (E, ∥ · ∥) be
a Banach space, P ⊂ E is a cone in E. Let T : P c → P c be a completely
continuous operator and let ψ be a nonnegative continuous concave functional
on P such that ψ(u) ≤ ∥u∥, ∀u ∈ P c. Suppose that there exist 0 < r < a < b < c
such that
(S1) {u ∈ P (ψ, a, b) | ψ(u) > a} ≠ ∅ and ψ(Tu) > a for u ∈ P (ψ, a, b),
(S2) ∥Tu∥ < a for u ∈ P a,
(S3) ψ(Tu) > a for u ∈ P (ψ, a, c) with ∥Tu∥ > b.

Then T has at least three fixed points u1, u2, u3 ∈ P c, such that ∥u1∥ < r,
a < ψ(u2), ∥u3∥ > r, ψ(u3) < a.

3. Some preliminary results

Lemma 3.1 ([12]). If ρ ∈ (0,+∞), then the linear problem{
u′′ − ρu′ + ρ2u = 0, t ∈ [0, 2π],
u(0)− u(2π) = 0, u′(0)− u′(2π) = 1,

(2)

has a unique positive solution

w(t) =

2e(ρ/2)t

[
sin

√
3
2 ρ(2π − t) + e−ρπ sin

√
3
2 ρt

]
√
3ρ(eρπ + e−ρπ − 2 cos

√
3ρπ)

.

For every function u ∈ C[0, 2π], we define the operator

(Ju)(t) :=

∫ 2π

0

g(t, x)u(x)dx.

where

g(t, x) :=


eρ(2π+x−t)

e2ρπ − 1
, 0 ≤ x ≤ t ≤ 2π,

eρ(x−t)

e2ρπ − 1
, 0 ≤ t ≤ x ≤ 2π.

By a direct calculation, we can easily obtain∫ 2π

0

g(t, x)dx =
1

ρ
.
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Now, we consider the problem{
u′′ − ρu′ + ρ2u = f(t, Ju),
u(i)(0) = u(i)(2π), i = 0, 1.

(3)

If u is a positive solution of problem (3), i.e. u(t) > 0 for t ∈ [0, 2π], it is easy
to verify that y(t) = (Ju)(t) is a positive solution of problem (1). Therefore, we
will concentrate the problem (3) for which we have the following result.

Lemma 3.2 ([9, 12]). Let w(t) be a unique solution of (2), then problem (3) is
equivalent to integral equation

u(t) =

∫ 2π

0

G(t, s)f(s, (Ju)(s))ds,

where

G(t, s) =

{
w(t− s), 0 ≤ s ≤ t ≤ 2π,

w(2π + t− s), 0 ≤ t ≤ s ≤ 2π,

=


2e(ρ/2)(t−s)[sin

√
3

2 ρ(2π−t+s)+e−ρπ sin
√

3
2 ρ(t−s)]√

3ρ(eρπ+e−ρπ−2 cos
√
3ρπ)

, s ≤ t,

2e(ρ/2)(2π+t−s)[sin
√

3
2 ρ(s−t)+e−ρπ sin

√
3

2 ρ(2π−s+t)]√
3ρ(eρπ+e−ρπ−2 cos

√
3ρπ)

, s ≥ t.

(4)

Lemma 3.3 ([9, 12]). Let ρ ∈ (0, 1√
3
), then we have the estimates

m =
2 sin

√
3ρπ√

3ρ(eρπ + 1)2
≤ G(t, s) ≤ 2√

3ρ sin
√
3ρπ

=M, t, s ∈ [0, 2π].

From [9], we know that u(t) = y(t)− ρω
(
ω =

L

ρ3
)
is a positive solution of (3)

when y(t) is the solution of{
u′′ − ρu′ + ρ2u = F (t, (Ju)(t)− ω), t ∈ [0, 2π],
u(i)(0) = u(i)(2π), i = 0, 1,

(5)

if the nonlinear term f satisfies the condition (H2). So, we can transform the
problem into discussing the existence of positive solutions for (5).

4. Existence of triple positive solutions

Let E = C[0, 2π] be endowed with the maximum norm, ∥y∥ = max
0≤t≤2π

|y(t)|.
Define the cone P ⊂ E by

P =

{
u ∈ E | u ≥ 0 for all t ∈ [0, 2π] and min

0≤t≤2π
u(t) ≥ max{σ∥u∥, ρω}

}
,

where σ = m/M .
Finally, let the nonnegative continuous concave functional ψ : P → [0,∞)

be defined by ψ(u) = min
0≤t≤2π

u(t), u ∈ P . We notice that, for each u ∈ P ,

ψ(u) ≤ ∥u∥.
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Theorem 4.1. Assume that (H1), (H2) hold. There exist constants 0 < r <

a < b < c
(
b =

a

σ
and L ≤ min{σaρ2, rρ2}

)
such that

(H3)

∫ 2π

0

f(s, (Ju)(s)− ω)ds ≥ ρω

m
− 2πL;

(H4) h(
c

ρ
− ω) ≤ c

2πM
;

(H5) g(
σa

ρ
− ω) >

a

2πm
;

(H6) h(
r

ρ
− ω) <

r

2πM
.

Then the boundary value problem (1) has at least three positive solutions
u1, u2 and u3 satisfying ui = J(yi−ρω), ∥y1∥ < r, a < ψ(y2) and ∥y3∥ > r with
ψ(y3) < a where yi(t) is the solution of (5)(i=1, 2, 3).

Proof. Define the operator T : P → P by

(Tu)(t) =

∫ 2π

0

G(t, s)F (s, (Ju)(s)− ω)ds, 0 ≤ t ≤ 2π,

where G(t, s) is the Green function given by (4). The boundary value problem
(5) has a solution u = u(t) if and only if u solves the operator equation u = Tu.
Thus we set out to verify that the operator T satisfies Theorem 2.1.

Firstly, we show that T : P c → P c. In fact, if u ∈ P , then (Ju)(t) − ω ≥
ρw/ρ − ω = 0. Thus from Lemma 3.3 and (H1), it follows that (Tu)(t) ≥ 0,
0 ≤ t ≤ 2π. Let u ∈ P , then from Lemma 3.3, we have

min
0≤t≤2π

(Tu)(t) = min
0≤t≤2π

∫ 2π

0

G(t, s)F (s, (Ju)(s)− ω)ds

≥ m

∫ 2π

0

F (s, (Ju)(s)− ω)ds

= σ

∫ 2π

0

MF (s, (Ju)(s)− ω)ds

≥ σ max
0≤t≤2π

∫ 2π

0

G(t, s)F (s, (Ju)(s)− ω)ds

= σ∥Tu∥.
On the other hand, by Lemma 3.3 and (H3), for all u ∈ P ,

(Tu)(t) =

∫ 2π

0

G(t, s)F (s, (Ju)(s)− ω)ds

≥ m

∫ 2π

0

F (s, (Ju)(s)− ω)ds

= m

∫ 2π

0

[f(s, (Ju)(s)− ω) + L]ds

≥ m(
ρω

m
− 2πL) +m2πL = ρω.
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So min
0≤t≤2π

(Tu)(t) ≥ max{σ∥u∥, ρω}, thus we have TP ⊂ P .

If u ∈ P c, then (Ju)(t)− ω ≤ c/ρ− ω. Therefore, by (H2), (H4) and Lemma
3.3, for 0 ≤ t ≤ 2π,

∥Tu∥ = max
0≤t≤2π

∫ 2π

0

G(t, s)F (s, (Ju)(s)− ω)ds

≤M

∫ 2π

0

F (s, (Ju)(s)− ω)ds

≤M

∫ 2π

0

h((Ju)(s)− ω)ds

≤M

∫ 2π

0

h(
c

ρ
− ω)ds = c.

Then T : P c → P c is well defined. It is easy to see that T is continuous and
completely continuous since f : [0, 2π]× [0,∞] → R is a continuous function.

In the same way, we can obtain that T : P r → Pr by (H6). So, condition (S2)
of Theorem 2.1 is satisfied.

Next we prove (S1) of Theorem 2.1 holds. Choose u0(t) =
a+ b

2
, 0 ≤ t ≤ 2π.

It is easy to see that u0(t) ∈ P (ψ, a, b) and ψ(u0) = min
0≤t≤2π

u0(t) =
a+ b

2
, so

{u ∈ P (ψ, a, b) | ψ(u) > a} ̸= ∅.
In fact, if u ∈ P (ψ, a, b), then min

0≤t≤2π
u(t) ≥ σ∥u∥ ≥ σψ(u) ≥ σa.

Thus

(Ju)(t)− ω =

∫ 2π

0

g(t, x)u(x)dx− ω ≥ σa

ρ
− ω.

As a result, it follows from (H2), (H5) and Lemma 3.3 that, for 0 ≤ t ≤ 2π,

ψ(Tu) = min
0≤t≤2π

∫ 2π

0

G(t, s)F (s, (Ju)(s)− ω)ds

≥ m

∫ 2π

0

F (s, (Ju)(s)− ω)ds

≥ m

∫ 2π

0

g((Ju)(s)− ω)ds

≥ m

∫ 2π

0

g(
σa

ρ
− ω)ds

= 2πmg(
σa

ρ
− ω) > a.

Consequently condition (S1) of Theorem 2.1 is satisfied.
We finally show that (S3) of Theorem 2.1 also holds.



Triple solutions for three-order periodic boundary value problems 81

Suppose that u ∈ P (ψ, a, c) with ∥Tu∥ > b. Then by Lemma 3.3, we have

ψ(Tu) = min
0≤t≤2π

∫ 2π

0

G(t, s)F (s, (Ju)(s)− ω)ds

≥ m

∫ 2π

0

F (s, (Ju)(s)− ω)ds

≥ σ max
0≤t≤2π

∫ 2π

0

G(t, s)F (s, (Ju)(s)− ω)ds

= σ∥Tu∥ > σb = a.

Thus condition (S3) of Theorem 2.1 is also satisfied. Therefore an application
of Theorem 2.1 leads to the conclusion that the boundary value problem (5) has
at least three positive solutions y1, y2 and y3 satisfying ∥y1∥ < r, a < ψ(y2) and
∥y3∥ > r with ψ(y3) < a. Thus the boundary value problem (1) has at least
three positive solutions u1, u2 and u3 satisfying ui = J(yi − ρω). �
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