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HIGHER ORDER ITERATIONS FOR MOORE-PENROSE

INVERSES†

SHWETABH SRIVASTAVA∗ AND D.K. GUPTA

Abstract. A higher order iterative method to compute the Moore-Penrose
inverses of arbitrary matrices using only the Penrose equation (ii) is de-

veloped by extending the iterative method described in [1]. Convergence
properties as well as the error estimates of the method are studied. The
efficacy of the method is demonstrated by working out four numerical ex-

amples, two involving a full rank matrix and an ill-conditioned Hilbert
matrix, whereas, the other two involving randomly generated full rank and
rank deficient matrices. The performance measures are the number of it-
erations and CPU time in seconds used by the method. It is observed that

the number of iterations always decreases as expected and the CPU time
first decreases gradually and then increases with the increase of the order
of the method for all examples considered.
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1. Introduction

The theory of generalized inverses has seen a substantial growth over the past
few decades. Many applications of statistics, prediction theory, control analysis
and numerical analysis often require computation of generalized inverses. The
Moore-Penrose inverse is one of the most important generalized inverses of ar-
bitrary singular square or rectangular (real or complex) matrix. It has been
extensively studied by many researchers [4, 2, 6, 9, 5, 3] and many methods are
proposed in the literature. Accordingly, it is important both practically and the-
oretically to find good higher order algorithms for computing a Moore-Penrose
inverse of a given arbitrary matrix. Let Cm×n and Cm×n

r denote the set of
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all complex (m × n) matrices and all complex (m × n) matrices with rank r,
respectively. For A ∈ Cm×n, it is denoted by A† and defined as

AA† = PR(A)

A†A = PR(A†)

where, R(A) and PR(A)denote the range space of A and orthogonal projection on

R(A) respectively. The unique matrix A† satisfies the following four equations

(i) AXA = A, (ii) XAX = X, (iii) (AX)∗ = AX, (iv) (XA)∗ = XA (1)

Both direct and iterative methods (cf. [11, 10, 2, 3, 9]) can be used to compute
A†. One of the most commonly used direct methods is the Singular Value De-
composition (SVD) method. For A ∈ Cm×n, the SVD method is a factorization
of the form

A = UΣV ∗

where, U is an m×m complex unitary matrix, Σ is an m×n rectangular diagonal
matrix with nonnegative real numbers on the diagonal and V is an n×n complex
unitary matrix. The A† can then be written as

A† = V Σ†U∗

where, Σ† is the generalized inverse of Σ obtained by replacing every nonzero
diagonal entry in Σ by its reciprocal and then transposing the resulting matrix.
This method is very accurate but time-intensive since it requires a large amount
of computational resources, especially in the case of large matrices. The most
frequently used iterative method for approximating A−1 is the method studied
by Householder [14] by analyzing successive improvements of a matrix X to solve
AX = M , A nonsingular, using the equation

Xk+1 = Xk + Ck(M −AXk), k ≥ 0 (2)

One version of the above has the matrices Ck project on the ith row, where i
cycles through all the rows of A. By taking M = I and Ck = Vk, the famous
Newton’s method originated in [21] is

Vk+1 = Vk(2I −AVk), k ≥ 0 (3)

As usual, I denotes the identity matrix of an appropriate order. If L is the
desired limit matrix and Vk is the k-th estimate of L, then the convergence
properties of examined iterative method can be studied with the aid of error
matrix Ek = Vk − L. If an iterative method is expressible as a simple matrix
formula, Ek+1 is sum of several terms

• zero order term consisting of a matrix which does not depend on Ek,
• one or more first order matrix terms in which Ek or its conjugate trans-
pose E∗

k appears only once,
• higher-order terms in which Ek or E∗

k appears at least twice
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All suitable algorithms have a zero-order term equal to 0. Hence, the first-
order term determine the terminal convergence properties. The eigenvalues of
A ∈ Cn×n

r are given by

λ1(A) ≥ · · · ≥ λr(A) > λr+1(A) = · · ·λn(A) = 0. (4)

It is further established that the eigenvalues of I − AV0 must have magnitude
less than 1 to ensure the convergence of (3). Since the residuals Rk = I−AVk in
(3) satisfies ∥Rk+1∥ ≤ ∥A∥∥Rk∥2, Newton’s method is a second order iterative
method [7]. Ben-Israel [11] used (3) and the starting value X0 = αA∗, where α
satisfies

0 < α <
2

λ1(AA∗)
. (5)

The iterative scheme (3) is generalized by the iteration Uk+1 = Uk(2PR(A) −
AUk), which converges to A†. Ben-Israel and Charnes [13] proved that the
sequence

Yk = αΣk
i=0A

∗(I − αAA∗)i, k = 0, 1, . . . (6)

converges to A† under the assumption (5). Li et al.[6] established a family of
iterative methods to compute the approximate inverse of a square matrix and
inner inverse of a non-square matrix given by

Vq+1 = Vq(kI −
k(k − 1)

2
AVq + . . .+ (−1)k−1(AVq)

k−1), k = 2, 3, . . . (7)

Chen and Wang [4] showed that this can be extended to compute A† with higher
orders. Katskis et.al.[8] developed a much faster computational method to cal-
culate the A† of singular square matrices and of rectangular matrices A. This
method has significantly better accuracy than the already proposed methods and
works for full and sparse matrices. Weiguo et al.[5] improves on the generalized
properties of a family of iterative methods to compute the approximate inverses
of square matrices and fixed inner inverses of rectangular matrices proposed in
[6]. They have also established that this fixed inverse is the Moore-Penrose in-
verse of the considered matrix. Vasilios et.al.[3] also presented a very fast and
reliable method to compute Moore-Penrose inverse. By using a general frame-
work where analytic functions of scalers are first developed and then matrices
substituted for the scalers, Katsaggelos and Efstratiadis [12] produced a conver-
gence faster than quadratic, for restricted initial estimates.

In this paper, a higher order iterative method to compute the Moore-Penrose
inverses of arbitrary matrices using only the Penrose equation (ii) is developed by
extending the iterative method described in [1]. Convergence properties as well
as the error estimates of the method are studied. The efficacy of the method is
demonstrated by working out four numerical examples, two involving a full rank
simple and an ill-conditioned Hilbert matrix, whereas, the other two involving
full rank and rank deficient randomly generated matrices. The performance
measures are the number of iterations and CPU time in seconds used by the
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method. It is observed that the number of iterations always decreases as expected
and the CPU time first decreases gradually and then increases with the increase
of the order of the method for all examples considered.

The paper is organized as follows. Section 1 is the introduction. In Section 2,
the higher order iterative method for computing the Moore-Penrose generalized
inverse of an arbitrary rectangular matrix is described. Some Lemmas and the
convergence analysis of the method are also established. In Section 3, the efficacy
of the method is demonstrated by working out four numerical examples, two
involving a full rank simple and an ill-conditioned Hilbert matrix, whereas, the
other two involving full rank and rank deficient randomly generated matrices.
Finally, conclusions are included in Section 4.

2. Higher order iteration with convergence Analysis

In this section, higher order iterative methods and their convergence analy-
sis to compute the Moore-Penrose inverse A† of an arbitrary complex matrix
A ∈ Cm×n is described. Let At, A∗, µ(A), ν(A) and rank(A), represent the
transpose, the conjugate transpose, the range space, the null space and the rank
of the matrix A ∈ Cm×n, respectively.

Definition 2.1 ([19]). Let A ∈ Cm×n, with column vectors v1, v2, . . . , vn, the
set

µ(A) = {c1v1 + c2v2 + . . .+ cnvn|c1, c2, . . . , cn are scalers}

are called the Range (the Image, or the Column Space) of A. The set

v(A) = {x ∈ Cn|Ax = 0}

is called the Null Space (or the Kernel) of A and for any A ∈ Cm×n, B ∈ Cs×t,
we call

µ(A,B) = {X ∈ Cm×t|X = AY B, ∀Y ∈ Cn×s},

ν(A,B) = {Y ∈ Cn×s|AY B = 0}

the Range of (A,B) and the Null Space of (A,B) respectively.

We shall now describe the higher order iterative method extending the method
described in [1] for computing the Moore-Penrose generalized inverses. Petković
et al. [1] proposed a quadratically convergent iterative method for computing
A† based on Penrose equations (ii) and (iv) as follows. Let

X∗ = (XAX)∗ = X∗(XA)∗ = X∗XA

Hence, for arbitrary β ∈ R, we get

X∗ = X∗ − β(X∗XA−X∗) = X∗(I − βXA) + βX∗

or equivalently,

X = (I − βXA)∗X + βX
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This leads to the following iterative method

Xk+1 = (1 + β)Xk − βXkAXk, k = 0, 1, . . . (8)

where, X0 = βA∗ for an appropriate real number β. For β < 1, the method
(8) has a linear convergence while for β = 1 its convergence is quadratic. The
first-order and the second-order error terms of (8) are

error1 = (1− β)Ek, error2 = −βEkAEk (9)

where, Ek = Xk−A† is the error matrix. Now, using only the Penrose equations
(ii) given by X = XAX and for arbitrary β ∈ R, we get

X = X + β(2X − 3XAX +XAXAX)

or, equivalently

X = X + βX(2I − 3AX + (AX)2)

This leads to the following third order extension of method (8)

Xk+1 = Xk + βXk(2I − 3AXk + (AXk)
2), k = 0, 1, . . . (10)

for X0 = βA∗. Continuing in a similar manner, this can further be extended to
the pth order for p ≥ 2, given by

Xk+1 = Xk + βXk[(I −AXk) + (I −AXk)
2 + . . .+ (I −AXk)

p−1], k = 0, 1, 2, . . . (11)

for X0 = βA∗, where β is an appropriate real number. The following Lemmas
will be used for establishing the convergence of these iterative methods.

Lemma 2.2. For all k ≥ 0, the sequence {Xk} generated by (10) and (11)
satisfies

(1) XkA = (XkA)
∗ (2) XkAA

† = Xk (3) A†AXk = Xk

Proof. This Lemma can be proved by induction. Clearly, (1) holds for k = 0 as
X0A = βA∗A = (X0A)

∗. Assume that it holds for some k. To show that it also
holds for k + 1, we consider

(Xk+1A)
∗ = (XkA)∗ + β{2(XkA)

∗ − 3((XkA)
∗)2 + ((XkA)

∗)3}
= XkA+ β(2XkA− 3(XkA)

2 + (XkA)3)

= XkA+ β(2Xk − 3XkAXk +Xk(AXk)
2)A

= Xk+1A

Hence it holds for all k ≥ 0. Likewise for pth order method (11), we get

(Xk+1A)
∗ = {XkA+ βXk[(I −AXk) + . . . (I −AXk)

p−1]A}∗

= (XkA)
∗ + β[(Xk(I −AXk)A)∗ + . . .+ (Xk(I −AXk)

p−1A)∗]

= XkA+ β[Xk(I −AXk)A+ . . .+Xk(I −AXk)
p−1A]

= XkA+ βXk[(I −AXk) + . . . (I −AXk)
p−1]A

= Xk+1A
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Clearly, (2) trivially holds for k = 0. Let it also holds for some k. To show that
it also holds for k + 1, we get

Xk+1AA
† = XkAA

† + βXk(2I − 3AXk + (AXk)
2)AA†

= Xk + βXk(2I − 3AXk + (AXk)
2)

= Xk+1

Likewise for pth order method (11), we get

Xk+1AA† = XkAA
† + βXk[(I −AXk) + . . .+ (I −AXk)

p−1]AA†

= Xk + βXk[(I −AXk) + . . .+ (I −AXk)
p−1]

= Xk+1

Proceeding in a similar manner, (3) can easily be proved for (10) and (11).
Hence, the Lemma 2.1 is proved for all k ≥ 0. �

Theorem 2.3. Let 0 ̸= A ∈ Cm×n, X = A†, the initial approximation X0 =
βA∗, β ∈ (0, 1] and its residual R0 = (X0−X)A satisfy ∥R0∥ < 1. The sequence
{Xk} generated by (10) starting with X0 = βA∗ converges to the Moore-Penrose
inverse A†. It has linear convergence for β ̸= 1 and third order convergence for
β = 1. Its first, second and the third order error terms are given by

error1 = (1− β)Ek, error2 = 0 and error3 = βEk(AEk)
2 (12)

where, Ek = Xk −A† denotes the error matrix.

Proof. Using Lemma 2.2 and substituting for Xk+1, we get

∥Xk+1 −X∥ = ∥Xk+1AX −XAX∥ ≤ ∥Xk+1A−XA∥∥X∥

Using Lemma 2.2 and (10), we get

Xk+1A−XA = (Xk + βXk(2I − 3AXk + (AXk)
2)A−XA

= XkA−XA+ β(2XkA− 3(XkA)
2 + (XkA)

3)

= XkA−XA+ β((XkA−XA)3 − (XkA−XA))

Thus, the sequence of residual matrices defined by Rk = XkA−XA satisfies the
following recurrence relation

Rk+1 = (1− β)Rk + βR3
k (13)

Let sk = ∥Rk∥. Now, for the convergence of the sequence {Xk}, we require that
sk → 0 as k → ∞. This can be shown by mathematical induction. It trivially
holds for k = 0, since, s0 = ∥R0∥ = ∥X0A−XA∥ < 1. Let it holds for some k,
i.e., sk < 1. To show that it also holds for k + 1, we take norm on (13) and get

sk+1 ≤ βs3k + (1− β)sk < βsk + (1− β)sk = sk < 1 (14)

Thus, sk is a monotonically decreasing bounded sequence converging to s as
k → ∞ and 0 ≤ s < 1. From (14), we get

s ≤ βs3 + (1− β)s
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This gives either s = 0 or s ≥ 1. Thus, s = 0. This completes the proof that
sk → 0 when k → ∞. Thus, Xk → X as k → ∞. Substituting Xk = X + Ek in
(10) and rearranging the terms, we get Ek+1 given by

Ek+1 = (1 + 2β)Ek − 2βEkAX − 3βXAEk + 2βXAEkAX − 3βEkAEk +

2βEkAEkAX + βX(AEk)
2 + βEk(AEk)

2

This leads to

error1 = (1− β)Ek

error2 = 0

and

error3 = βEk(AEk)
2

One can easily see that the method is linear convergent for β ̸= 1 and of third
order convergent for β = 1 as error1 and error2 are equal to 0. �

Theorem 2.4. Let 0 ̸= A ∈ Cm×n, X = A†, the initial approximation X0 =
βA∗, β ∈ (0, 1] and its residual R0 = (X0−X)A satisfy ∥R0∥ < 1. The sequence
{Xk} generated by (11) starting with X0 = βA∗ converges to the Moore-Penrose
inverse A†. It has linear convergence for β ̸= 1 and pth order convergence for
β = 1, where, p ≥ 2 is a positive integer. All error terms of the method vanishes
except the first and the pth order error terms given by

error1 = (1− β)Ek, errorp = (−1)p−1βEk(AEk)
p−1 (15)

Proof. Using Lemma 2.2 and substituting for Xk+1, we get

∥Xk+1 −X∥ = ∥Xk+1AX −XAX∥ ≤ ∥Xk+1A−XA∥∥X∥
Again using Lemma 2.2 and (11), this gives

Xk+1A−XA = (Xk + βXk[(I −AXk) + (I −AXk)
2 + . . .+ (I −AXk)

p−1])A−XA.

Thus, the sequence of residual matrices defined by Rk = XkA − XA satisfies
the following recurrence relation

Rk+1 = (1− β)Rk + (−1)p−1βRp
k (16)

Proceeding similar to theorem 2.3, it can be proved that Xk → X as k → ∞.
Substituting Xk = X+Ek in (11) and rearranging the terms, we get Ek+1 given
by

Ek+1 = (1 + β)Ek − βXAEk − βEkAX + (−1)p−1βEk(AEk)
p−1

On simplification, we get all error terms equal to zero except error1 and errorp
given by

error1 = (1− β)Ek

errorp = (−1)p−1βEk(AEk)
p−1
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One can easily see that the method is linearly convergent for β ̸= 1 and of pth
order convergent for β = 1 as all other error terms vanishes. Hence, the theorem
is proved. �

We must note here that the convergence of the above methods (10) and (11)
require the condition ∥(βA∗ −X)A∥ < 1. To verify this, we need an equivalent
condition which does not contain the Moore-Penrose inverse X or A†. We follow
exactly the same way as done in [1] by using the following Lemma.

Lemma 2.5 ([1]). Let the eigenvalues of matrix A∗A satisfies (4). Condition
ρ((βA∗ −X)A) < 1 is satisfied under the assumption

max
1≤i≤r

| 1− βλi(A
∗A) |< 1 (17)

To establish this Lemma, we need the following Lemmas.

Lemma 2.6 ([15]). Let M ∈ Cn×n and ϵ > 0 be given. There is at least one
matrix norm ∥ . ∥ such that

ρ(M) ≤∥ M ∥≤ ρ(M) + ϵ

where ρ(M) = max{| λ1(M) |, . . . , | λn(M) |} denotes the spectral radius of M .

Lemma 2.7 ([18]). If P ∈ Cn×n and S ∈ Cn×n are such that P = P 2 and
PS = SP then

ρ(PS) ≤ ρ(S)

Remark 2.1. For any A ∈ Cm×n, the sequence generated by our higher order
iterative methods starting with X0 = βA∗ are convergent for any β satisfying
0 < β < 2/σ2(A), where σ(A) = ∥A∥2.

3. Numerical examples

In this section, four numerical examples are worked out to demonstrate the
efficacy of our pth order method for various values of p. The mean CPU time
in second and the number of iterations are measured as performance param-
eters. For full rank matrices the number of iterations used are compared by
plotting figures with x-axis representing the values of p and y-axis representing
the number of iterations. For randomly generated matrices, we have tested 50
times matrices and the mean CPU time in second are measured and tabulated
for values of 2 ≤ p ≤ 7 and the number of iterations are compared by plotting
figures with x-axis representing the times of choice of random matrices and y-
axis representing the number of iterations only for p = 2 and p = 3. The value
of ϵ = 10−7 and the maximum number of iterations equal to 100 are taken as the
termination criteria. All the examples are run on an Intel core 2 Duo processor
running at 2.80GHz and using MATLAB 7.4 (R2009b).

Example 3.1. Consider the matrix A of order (5× 4) given by
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A =


0.2794 0.1676 0.0645 0.2326
0.0065 0.2365 0.2274 0.1261
0.2271 0.1430 0.1009 0.2867
0.1265 0.1015 0.1806 0.2846
0.2773 0.0632 0.0503 0.1979


The choice β = 0.60 satisfies the convergence criteria given by

max1≤i≤4 | 1− βλi(A
∗A) |= 0.9988 < 1

since the eigenvalues of the matrix A∗A are

(λ1, λ2, λ3, λ4) = (0.0020, 0.0146, 0.0832, 0.6152)

The iterative method (11) generates a sequence of iterates {Xk} converging to
the Moore-Penrose generalized inverse A† given by

A† =


−0.2165 1.4802 −4.9702 −1.3732 8.4865
5.0277 1.8673 4.1653 −4.6975 −6.3778
−5.3215 4.5524 −8.4278 3.4688 10.5748
0.8566 −4.0180 6.9330 3.0649 −7.8449


The comparison of number of iterations are plotted in Figure 1. It can be
observed from Figure 1 that the iterative method (11) converges to the Moore-
Penrose generalized inverse A† in 36 iterations for p = 2 and as expected as the
order p increases, it reduces to 25 for p = 8.
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Figure 1. Number of iterations versus the value of p for ex-
ample 3.1
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Example 3.2. Consider a (30 × 30) matrix A whose elements are generated
randomly from [−0.2, 0.2]. Taking the termination criteria as

max{∥AXkA−A∥F , ∥XkAXk −Xk∥F , ∥(AXk)
∗ −AXk∥F , ∥(XkA)∗ −XkA∥F } ≤ ϵ

where, ∥.∥F stands for the Frobenius-norm of a matrix, Table 1 shows the
comparison of mean CPU time in seconds for for 2 ≤ p ≤ 7. One can easily
see that with the increase of p, the CPU time decreases initially and then starts
increases after p > 4. The comparison of number of iterations are plotted in
Figure 2 for p = 2 and p = 3. Similar results are also observed for higher
order random matrices, for example, (40×40) matrix A whose elements are also
randomly generated from [−0.2, 0.2].

Table 1. Comparison of CPU time

p p =2 p =3 p =4 p =5 p =6 p = 7

CPU time 2.1387e − 5 1.6948e − 5 1.6245e − 5 1.6554e − 5 1.7205e − 5 1.8946e − 5
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Figure 2. Comparison of number of iterations for example 3.2

Example 3.3. Consider a (100 × 50) rank deficient matrix A whose elements
are generated randomly from [−0.2, 0.2]. Taking the termination criteria as

max{∥AXkA−A∥F , ∥XkAXk −Xk∥F , ∥(AXk)
∗ −AXk∥F , ∥(XkA)∗ −XkA∥F } ≤ ϵ
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where, ∥.∥F stands for the Frobenius-norm of a matrix, Table 2 shows the
comparison of mean CPU time in seconds for for 2 ≤ p ≤ 7. One can easily
see that with the increase of p, the CPU time decreases initially and then starts
increases after p ≥ 4. The comparison of number of iterations are plotted in
Figure 3 for p = 2 and p = 3.
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Figure 3. Comparison of number of iterations for example 3.3

Table 2. Comparison of CPU time

p p =2 p =3 p =4 p =5 p =6 p = 7

CPU time 2.5287e − 5 1.7793e − 5 1.8346e − 5 1.9451e − 5 2.0135e − 5 2.1137e − 5

Example 3.4. Consider the ill-conditioned Hilbert matrix A of order (5 × 5)
given by

A =


1.0000 0.5000 0.3333 0.2500 0.2000
0.5000 0.3333 0.2500 0.2000 0.1667
0.3333 0.2500 0.2000 0.1667 0.1429
0.2500 0.2000 0.1667 0.1429 0.1250
0.2000 0.1667 0.1429 0.1250 0.1111


The choice β = 0.80 satisfies the convergence criteria given by

max1≤i≤5 | 1− βλi(A
∗A) |= 0.9999 < 1
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since the eigenvalues of the matrix A∗A are

(λ1, λ2, λ3, λ4, λ5) = (2.4556, 0.0435, 0.0001, 9.357e− 8, 1.081e− 11)

The iterative method (11) generates a sequence of iterates {Xk} converging to
the Moore-Penrose generalized inverse A† given by

A† =


20 −300 1050 −1400 630

−300 4800 −18900 26880 −12600
1050 −18900 79380 −117600 56700

−1400 26880 −117600 179200 −88200
630 −12600 56700 −88200 44100


The comparison of number of iterations are plotted in Figure 4. It can be
observed from Figure 4 that the iterative method (11) converges to the Moore-
Penrose generalized inverse A† in 51 iterations for p = 2 and as expected as the
order p increases, it reduces to 19 for p = 10.
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Figure 4. Number of iterations versus the value of p for ex-
ample 3.4

4. Conclusions

A quadratically convergent iterative method proposed by [1] is extended to
a family of higher order iterative methods to compute the Moore-Penrose gen-
eralized inverses of arbitrary singular or rectangular (real or complex) matrices.
This extension is carried out by using only the Penrose equation (ii) in place of
(ii) and (iv) as used in [1]. Convergence properties as well as the error estima-
tions are studied. The efficacy of the method is demonstrated by working out
four numerical examples involving full rank and rank deficient randomly gener-
ated matrices and ill-conditioned Hilbert matrix. The performance in terms of
computational time and the number of iterations are evaluated with respect to
the order of the iterative methods. It is observed that the number of iterations
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always decreases as expected and the CPU time first decreases gradually and
then increases with respect to the order of the iterative methods for all examples.
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