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ON THE MONOPHONIC NUMBER OF A GRAPH

A.P. SANTHAKUMARAN, P. TITUS AND K. GANESAMOORTHY∗

Abstract. For a connected graph G = (V, E) of order at least two, a set
S of vertices of G is a monophonic set of G if each vertex v of G lies on
an x− y monophonic path for some elements x and y in S. The minimum
cardinality of a monophonic set of G is the monophonic number of G,
denoted by m(G). Certain general properties satisfied by the monophonic
sets are studied. Graphs G of order p with m(G) = 2 or p or p − 1 are
characterized. For every pair a, b of positive integers with 2 ≤ a ≤ b, there
is a connected graph G with m(G) = a and g(G) = b, where g(G) is the
geodetic number of G. Also we study how the monophonic number of a
graph is affected when pendant edges are added to the graph.

AMS Mathematics Subject Classification : 05C12.
Key words and phrases : geodetic set, geodetic number, monophonic set,
monophonic number, monophonic distance.

1. Introduction

By a graph G = (V,E) we mean a finite undirected connected graph without
loops or multiple edges. The order and size of G are denoted by p and q respec-
tively. For basic graph theoretic terminology we refer to Harary [5]. For vertices
u and v in a connected graph G, the distance d(u, v) is the length of a shortest
u − v path in G. An u − v path of length d(u, v) is called an u− v geodesic. It
is known that d is a metric on the vertex set V of G. The neighborhood of a
vertex v is the set N(v) consisting of all vertices u which are adjacent with v.
The closed neighborhood of a vertex v is the set N [v] = N(v)

⋃
{v}. A vertex v

is an extreme vertex if the subgraph induced by its neighbors is complete. The
closed interval I[x, y] consists of all vertices lying on some x − y geodesic of
G, while for S ⊆ V, I[S] =

⋃

x,y∈S

I[x, y]. A set S of vertices is a geodetic set if

I[S] = V, and the minimum cardinality of a geodetic set is the geodetic number
g(G). A geodetic set of cardinality g(G) is called a g-set. The geodetic number of
a graph was introduced in [1,6] and further studied in [2,4]. The detour distance
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Figure 1. A graph G with radmG = 3 and diammG = 5

D(u, v) between two vertices u and v in G is the length of a longest u − v path
in G. An u − v path of length D(u, v) is called an u − v detour. It is known
that D is a metric on the vertex set V of G. The concept of detour distance was
introduced and studied in [3].

A chord of a path P is an edge joining two non-adjacent vertices of P. A path
P is called monophonic if it is a chordless path. For any two vertices u and v in a
connected graph G, the monophonic distance dm(u, v) from u to v is defined as
the length of a longest u−v monophonic path in G. Themonophonic eccentricity
em(v) of a vertex v in G is em(v) = max {dm(v, u) : u ∈ V (G)}. The monophonic
radius, radmG of G is radmG = min {em(v) : v ∈ V (G)} and the monophonic
diameter, diammG of G is diammG = max {em(v) : v ∈ V (G)}. A vertex u in
G is monophonic eccentric vertex of a vertex v in G if em(u) = dm(u, v). For
the graph G given in Figure 1, d(v1, v4) = 2, D(v1, v4) = 6 and dm(v1, v4) = 4.
Thus the monophonic distance is different from both the distance and the detour
distance. The usual distance d and the detour distance D are metrics on the
vertex set V of a connected graph G, whereas the monophonic distance dm is not
a metric on V . For the graph G given in Figure 1, dm(v4, v6) = 5, dm(v4, v5) =
1 and dm(v5, v6) = 1. Hence dm(v4, v6) > dm(v4, v5) + dm(v5, v6) and so the
triangle inequality is not satisfied. It is clear that for vertices u and v in a
connected graph G of order p, 0 ≤ d(u, v) ≤ dm(u, v) ≤ D(u, v) ≤ p − 1.
The monophonic distance was introduced and studied in [7]. For the graph G
given in Figure 1, the monophonic distance between vertices and the monophonic
eccentricities of vertices are given in Table 1. Thus radmG = 3 and diammG = 5.
The following theorems will be used in the sequel.

Theorem 1.1 ([6]). Each extreme vertex of a connected graph G belongs to

every geodetic set of G.

Theorem 1.2 ([6]). For any tree T with k endvertices, g(T ) = k.

Throughout this paperG denotes a connected graph with at least two vertices.

2. Monophonic number of a graph

Definition 2.1. A set S of vertices of a graph G is a monophonic set of G if
each vertex v of G lies on an x − y monophonic path in G for some x, y ∈ S.
The minimum cardinality of a monophonic set of G is the monophonic number

of G and is denoted by m(G).
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Table 1. Monophonic eccentricities of the graph G given in
Figure 1

dm(vi, vj) v1 v2 v3 v4 v5 v6 v7 v8 em(v)

v1 0 1 1 4 1 4 3 4 4

v2 1 0 4 3 1 5 4 1 5

v3 1 4 0 1 2 4 4 4 4

v4 4 3 1 0 1 5 1 4 5

v5 1 1 2 1 0 1 3 3 3

v6 4 5 4 5 1 0 1 1 5

v7 3 4 4 1 3 1 0 1 4

v8 4 1 4 4 3 1 1 0 4

Example 2.2. For the graph G given in Figure 2, S1 = {x,w} and S2 = {u,w}
are the minimum monophonic sets of G and so m(G) = 2.

b

b

b

b

b

x y

vu

w

Figure 2. A graph G with m(G) = 2

A vertex v in a graphG is a monophonic vertex if v belongs to every minimum
monophonic set of G. If G has a unique minimum monophonic set S, then every
vertex in S is a monophonic vertex. In the next theorem, we show that there are
certain vertices in a nontrivial connected graph G that are monophonic vertices
of G.

Theorem 2.3. Each extreme vertex of a connected graph G belongs to every

monophonic set of G. Moreover, if the set S of all extreme vertices of G is a

monophonic set, then S is the unique minimum monophonic set of G.

Proof. Let u be an extreme vertex and let S be a monophonic set of G. Suppose
that u /∈ S. Then u is an internal vertex of an x−y monophonic path, say P , for
some x, y ∈ S. Let v and w be the neighbors of u on P . Then v and w are not
adjacent and so u is not an extreme vertex, which is a contradiction. Therefore
u belongs to every monophonic set of G. The second part of the theorem is
clear. �

Corollary 2.4. For the complete graph Kp(p ≥ 2), m(Kp) = p.

Theorem 2.5. Let G be a connected graph with a cutvertex v and let S be a

monophonic set of G. Then every component of G − v contains an element of

S.

Proof. Suppose that there is a component B of G − v such that B contains no
vertex of S. Let u be any vertex in B. Since S is a monophonic set, there exists
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a pair of vertices x and y in S such that u lies in some x− y monophonic path
P : x = u0, u1, u2, ..., u, ..., un = y in G with u 6= x, y. Since v is a cutvertex of
G, the x− u subpath P1 of P and the u− y subpath P2 of P both contain v, it
follows that P is not a path, which is a contradiction. �

Theorem 2.6. No cutvertex of a connected graph G belongs to any minimum

monophonic set of G.

Proof. Let v be a cutvertex of G and let S be a minimum monophonic set of
G. Then by Theorem 2.5, every component of G− v contains an element of S.
Let U and W be two distinct components of G − v and let u ∈ U and w ∈ W .
Then v is an internal vertex of an u − w monophonic path. Let S

′

= S − {v}.
It is clear that every vertex that lies on an u − v monophonic path also lies on
an u − w monophonic path. Hence it follows that S

′

is a monophonic set of G,
which is a contradiction to S a minimum monophonic set of G. �

Corollary 2.7. If T is a tree with k endvertices, then m(T ) = k.

Proof. This follows from Theorem 2.3 and Theorem 2.6. �

We denote the vertex connectivity of a connected graph G by κ(G) or κ.

Theorem 2.8. If G is a non-complete connected graph such that it has a min-

imum cutset consisting of κ vertices, then m(G) ≤ p− κ.

Proof. Since G is a non-complete connected graph, it is clear that 1 ≤ κ ≤ p−2.
Let U = {u1, u2, u3, ..., uκ} be a minimum cutset ofG. LetG1, G2, ..., Gr, (r ≥ 2)
be the components of G−U and let S = V −U . Then every vertex ui (1 ≤ i ≤ κ)
is adjacent to at least one vertex of Gj , for each j (1 ≤ j ≤ r). It is clear that
S is a monophonic set of G and so m(G) ≤ |S| = p− κ. �

Remark 2.1. The bound in Theorem 2.8 is sharp. For the cycle C4, m(C4) = 2.
Also κ = 2 and p− κ = 2. Thus m(G) = p− κ.

The following theorem is clear.

Theorem 2.9. For any connected graph G, 2 ≤ m(G) ≤ p.

The bounds in the above theorem are sharp. For the complete graph Kp(p ≥
2), m(Kp) = p. The set of two endvertices of a path Pn(n ≥ 2) is its unique
minimum monophonic set so that m(Pn) = 2.

Theorem 2.10. For any integer k such that 2 ≤ k ≤ p there is a connected

graph G of order p such that m(G) = k.

Proof. For k = p, the theorem follows from Corollary 2.4 by taking G = Kp.
For 2 ≤ k ≤ p− 1, the tree G given in Figure 3 has p vertices and it follows from
Corollary 2.7 that m(G) = k. �
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Figure 3. The graph G in Theorem 2.10 with m(G) = k

Now we proceed to characterize graphs G for which the bounds in Theorem
2.9 are attained.

Theorem 2.11. For any connected graph G of order p, m(G) = p if and only

if G is complete.

Proof. Let m(G) = p. Suppose that G is not a complete graph. Then there
exist two vertices u and v such that u and v are not adjacent in G. Since G is
connected, there is a monophonic path from u to v, say P , with length at least
2. Let x be a vertex of P such that x 6= u, v. Then S = V −{x} is a monophonic
set of G and hence m(G) ≤ p− 1, which is a contradiction. The converse follows
from Corollary 2.4. �

Definition 2.12. Let x be any vertex in G. A vertex y in G is said to be an x
- monophonic superior vertex if for any vertex z with dm(x, y) < dm(x, z), z lies
on an x− y monophonic path.

Example 2.13. For any vertex x in the cycle Cp(p ≥ 4), V (Cp) − N [x] is the
set of all x - monophonic superior vertices.

We give below a property related with monophonic eccentric vertex of x and
x - monophonic superior vertex in a graph G.

Theorem 2.14. Let x be any vertex in G. Then every monophonic eccentric

vertex of x is an x - monophonic superior vertex.

Proof. Let y be a monophonic eccentric vertex of x so that em(x) = dm(x, y).
If y is not an x - monophonic superior vertex, then there exists a vertex z in G
such that dm(x, y) < dm(x, z) and z does not lie on any x− y monophonic path
and hence em(x) ≥ dm(x, z) > dm(x, y), which is a contradiction. �

Note 2.15. The converse of Theorem 2.14 is not true. For the cycle C6 :
v1, v2, v3, v4, v5, v6, v1, the vertex v4 is a v1 - monophonic superior vertex and it
is not a monophonic eccentric vertex of v1.

Theorem 2.16. Let G be a connected graph. Then m(G) = 2 if and only if

there exist two vertices x and y such that y is an x- monophonic superior vertex

and every vertex of G is on an x− y monophonic path.

Proof. Let m(G) = 2 and let S = {x, y} be a minimum monophonic set of G. If
y is not an x - monophonic superior vertex, then there is a vertex z in G with
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dm(x, y) < dm(x, z) and z does not lie on any x−y monophonic path. Thus S is
not a monophonic set of G, which is a contradiction. The converse is clear from
the definition. �

Theorem 2.17. Let G be a connected graph of order p ≥ 3. Then m(G) = p−1
if and only if G = K1 +

⋃
mjKj, where

∑
mj ≥ 2.

Proof. Let G = K1 +
⋃
mjKj , where

∑
mj ≥ 2. Then G has exactly one

cutvertex and all other vertices are extreme and hence by Theorems 2.3 and 2.6,
m(G) = p− 1. Conversely, let m(G) = p − 1. Let S be a monophonic set such
that |S| = p − 1. Let v /∈ S. We show that v is a cutvertex of G. Otherwise,
G − v has just one component. By Theorem 2.3, v is not an extreme vertex of
G. Hence there exist vertices x, y ∈ N(v) such that x and y are not adjacent
in G − v. Let P be an x − y monophonic path in G − v of length at least 2.
Choose a vertex z on P such that z 6= x, y. Note that z 6= v. Then it is clear
that S1 = V − {v, z} is a monophonic set of G so that m(G) ≤ p − 2, which is
a contradiction. Hence v is a cutvertex of G and by Theorem 2.6, v is the only
cutvertex of G.

Now, let G1, G2, ..., Gr be the components of G− v. First, we show that each
Gi is complete. Suppose that some component, say G1, is not complete. Then
there exist two vertices x and y in G1 such that x and y are not adjacent. Choose
a vertex z in an x − y geodesic such that z 6= x, y. Then S2 = V − {v, z} is a
monophonic set of G so that m(G) ≤ p − 2, which is a contradiction. Now, it
remains to show that v is adjacent to every vertex of Gi for each i (1 ≤ i ≤ r).
Otherwise, there exists a component, say Gi, such that v is not adjacent to at
least one vertex of Gi. Hence there is a vertex u in Gi such that u is not extreme
in G. Then S3 = V −{v, u} is a monophonic set of G so that m(G) ≤ p−2, which
is a contradiction. Hence G = K1+∪mjKj , where K1 = {v} and

∑
mj ≥ 2. �

3. Bounds for the monophonic number of a graph

In the following theorem we give an improved upper bound for the mono-
phonic number of a graph in terms of its order and monophonic diameter. For
convenience, we denote the monoponic diameter diammG by dm itself.

Theorem 3.1. If G is a non-trivial connected graph of order p and monophonic

diameter dm, then m(G) ≤ p− dm + 1.

Proof. Let u and v be vertices of G such that dm(u, v) = dm and let P : u =
v0, v1, ..., vdm

= v be a u − v monophonic path of length dm. Let S = V −
{v1, v2, ..., vdm−1}. Then it is clear that S is a monophonic set of G so that
m(G) ≤ |S| = p− dm + 1. �

For the complete graph Kp(p ≥ 2), dm = 1 and m(Kp) = p so that the bound
in Theorem 3.1 is sharp.

A caterpillar is a tree for which the removal of all the endvertices gives a
path.
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Theorem 3.2. For every non-trivial tree T of order p and monophonic diameter

dm, m(T ) = p− dm + 1 if and only if T is a caterpillar.

Proof. Let T be any non-trivial tree. Let P : u = v0, v1, ..., vdm
be a monophonic

diametral path. Let k be the number of endvertices of T and l be the number of
internal vertices of T other than v1, v2, ..., vdm−1. Then dm − 1 + l + k = p. By
Corollary 2.7, m(T ) = k and som(T ) = p−dm−l+1. Hencem(T ) = p−dm+1 if
and only if l = 0, if and only if all the internal vertices of T lie on the monophonic
diametral path P , if and only if T is a caterpillar. �

For any connected graph G, radmG ≤ diammG. It is shown in [7] that every
two positive integers a and b with a ≤ b are realizable as the monophonic radius
and monophonic diameter, respectively, of some connected graph. This theorem
can also be extended so that the monophonic number can be prescribed when
radmG < diammG.

Theorem 3.3. For positive integers r, d and k ≥ 4 with r < d, there exists a

connected graphs G such that radmG = r, diammG = d and m(G) = k.

Proof. We prove this theorem by considering two cases.
Case 1. r = 1. Then d ≥ 2. Let Cd+2 : v1, v2, ..., vd+2, v1 be a cycle of order

d+2. Let G be the graph obtained by adding k−2 new vertices u1, u2, ..., uk−2 to
Cd+2 and joining each of the vertices u1, u2, ..., uk−2, v3, v4, ..., vd+1 to the vertex
v1. The graph G is shown in Figure 4. It is easily verified that 1 ≤ em(x) ≤ d
for any vertex x in G and em(v1) = 1, em(v2) = d. Then radmG = 1 and
diammG = d. Let S = {u1, u2, ..., uk−2, v2, vd+2} be the set of all extreme
vertices of G. Since S is a monophonic set of G, it follows from Theorem 2.3
that m(G) = k.

Case 2. r ≥ 2. Let C : v1, v2, ..., vr+2, v1 be a cycle of order r + 2 and let
W = K1+Cd+2 be the wheel with V (Cd+2) = {u1, u2, ..., ud+2}, K1 = {v1} and
all other vertices distinct. Now, add k− 3 new vertices w1, w2, ..., wk−3 and join
each wi(1 ≤ i ≤ k − 3) to the vertex v1 and obtain the graph G of Figure 5. It
is easily verified that r ≤ em(x) ≤ d for any vertex x in G and em(v1) = r and
em(u1) = d. Thus radmG = r and diammG = d. Let S = {w1, w2, ..., wk−3}
be the set of all extreme vertices of G. By Theorem 2.3, every monophonic
set of G contains S. It is clear that S is not a monophonic set of G. Let
T = S

⋃
{u1, u3, v3}. It is easily verified that T is a minimum monophonic set

of G and so m(G) = k. �

Problem 3.4. For any three positive integers r, d and k ≥ 4 with r = d, does
there exist a connected graph G with radm = r, diamm = d and m(G) = k?

Theorem 3.5. For each triple d, k, p of integers with 2 ≤ k ≤ p−d+1 and d ≥
2, there is a connected graph G of order p such that diammG = d and m(G) = k.
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Figure 4. The graph G in Case 1 of Theorem 3.3
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Figure 5. The graph G in Case 2 of Theorem 3.3

Proof. Let Pd+1 : u1, u2, ..., ud+1 be a path of length d. Add p−d−1 new vertices,
v1, v2, ..., vk−2, w1, w2, ..., wp−d−k+1 to Pd+1 and join each wi(1 ≤ i ≤ p−d−k+1)
to u1, u2 and u3, and also join each vj(1 ≤ j ≤ k − 2) to u2, thereby producing
the graph G of Figure 6. Then G has order p and monophonic diameter d. If
p − d − k + 1 ≤ 1, then S = {v1, v2, ..., vk−2, u1, ud+1} is the set of all extreme
vertices of G. Since S is a monophonic set of G, it follows from Theorem 2.3 that
m(G) = k. So, let p− d− k + 1 ≥ 2. If d = 2, then S1 = {v1, v2, ..., vk−2} is the
set of all extreme vertices of G. It is clear that neither S1 nor S1 ∪ {x}, where
x /∈ S1, is a monophonic set of G. Since S2 = S1 ∪ {u1, u3} is a monophonic
set of G, it follows from Theorem 2.3 that m(G) = k. If d ≥ 3, then S3 =
{v1, v2, ..., vk−2, ud+1} is the set of all extreme vertices of G. Now, S3 is not a
monophonic set of G. Since S4 = S3 ∪ {u1} is a monophonic set of G, it follows
from Theorem 2.3 that m(G) = k. �

Theorem 3.6. For any connected graph G of order p, 2 ≤ m(G) ≤ g(G) ≤ p.

Proof. Since every geodesic is a monophonic path, it follows that every geodetic
set is a monophonic set, and hence m(G) ≤ g(G). The other inequalities are
trivial. �
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Figure 6. The graph G in Theorem 3.5 with diammG = d and m(G) = k

Remark 3.1. The bounds in Theorem 3.6 are sharp. For the complete graph
Kp, m(Kp) = g(Kp) = p. For a non-trivial path Pn, m(Pn) = g(Pn) = 2. Also,
if G is a non-trivial tree, or an even cycle, or a complete bipartite graph, then
m(G) = g(G). All the inequalities in Theorem 3.6 are strict. For the graph G

given in Figure 7, S = {v6, v7, v3} is a minimum monophonic set of G so that
m(G) = 3 and no 3-elements subset of the vertex set is a geodetic set of G.
Since S ∪ {v1} is a geodetic set of G, it follows that g(G) = 4. Thus we have
2 < m(G) < g(G) < p.

b b

b

bb

b b

v1 v2

v3

v4
v5

v6 v7

Figure 7. A graph G in Remark 3.1 with 2 < m(G) < g(G) < p

In view of this remark, we have the following problem.

Problem 3.7. Characterize graphs G for which m(G) = g(G).

Theorem 3.8. For every pair a, b of positive integers with 2 ≤ a ≤ b, there is

a connected graph G with m(G) = a and g(G) = b.

Proof. For 2 ≤ a = b, any tree with a endvertices has the desired properties, by
Theorem 1.2 and Corollary 2.7. So, assume that 2 ≤ a < b. Let Pi : xi, wi, yi
(1 ≤ i ≤ b−a) be b−a copies of a path of length 2 and P : v1, v2, v3, v4 a path of
length 3. Let G be the graph obtained by joining each xi(1 ≤ i ≤ b−a) in Pi and
v2 in P , joining each yi(1 ≤ i ≤ b− a) in Pi and v4 in P ; and adding a− 1 new
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vertices u1, u2, ..., ua−1 and joining each ui(1 ≤ i ≤ a− 1) to v4. The graph G is
shown in Figure 8. Let S = {v1, u1, ..., ua−1} be the set of all extreme vertices
of G. It is easily verified that S is a monophonic set of G and so by Theorem
2.3, m(G) = |S| = a.
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v1 v2 v3 v4

u1 u2 ua−1

Figure 8. The graph G in Theorem 3.8 with m(G) = a and g(G) = b

Next, we show that g(G) = b. By Theorem 1.1, every geodetic set of G
contains S. Clearly, S is not a geodetic set of G. It is easily verified that at
least one of the vertex of each Pi(1 ≤ i ≤ b − a) must belong to every geodetic
set of G. Since T = S ∪ {w1, w2, ..., wb−a} is a geodetic set of G, it follows from
Theorem 1.1 that T is a minimum geodetic set of G and so g(G) = b. �

4. Monophonic number of a graph by adding some pendant edges

Theorem 4.1. If G
′

is a graph obtained by adding l pendant edges to a connected

graph G, then m(G) ≤ m(G
′

) ≤ m(G) + l.

Proof. Let G
′

be the connected graph obtained from G by adding l pendant
edges uivi(1 ≤ i ≤ l), where each ui(1 ≤ i ≤ l) is a vertex of G and each
vi(1 ≤ i ≤ l) is not a vertex of G. Let S be a minimum monophonic set of G.

Then S ∪ {v1, v2, ..., vl} is a monophonic set of G
′

and so m(G
′

) ≤ m(G) + l.

Now, we claim that m(G) ≤ m(G
′

). Suppose that m(G) > m(G
′

). Then let

S
′

be a monophonic set of G
′

with |S
′

| < m(G). Since each vi(1 ≤ i ≤ l) is

an extreme vertex of G
′

, it follows from Theorem 2.3 that {v1, v2, ..., vl} ⊆ S
′

.

Let S = (S
′

− {v1, v2, ..., vl}) ∪ {u1, u2, ..., ul}. Then S is a subset of V (G)

and |S| = |S
′

| < m(G). Now, we show that S is a monophonic set of G. Let

w ∈ V (G)−S. Since S
′

is a monophonic set of G
′

, w lies on an x−y monophonic

path P in G′ for some vertices x, y ∈ S
′

. If neither x nor y is vi(1 ≤ i ≤ l),
then x, y ∈ S. If exactly one of x, y is vi(1 ≤ i ≤ l), say x = vi. Then w
lies on the ui − y monophonic path in G obtained from P by removing vi. If
both x, y ∈ {v1, v2, ..., vl}, then let x = vi and y = vj where i 6= j. Hence w
lies on the ui − uj monophonic path in G obtained from P by removing vi and
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vj . Thus S is a monophonic set of G. Hence m(G) ≤ |S| < m(G), which is a
contradiction. �

Remark 4.1. The bounds for m(G
′

) in Theorem 4.1 are sharp. Consider a tree
T with number of endvertices k ≥ 3. Let S = {v1, v2, ..., vk} be the set of all
endvertices of T . Then by Corollary 2.7, m(G) = k. If we add a pendant edge

to an endvertex of T , then we obtain another tree T
′

with k endvertices. Hence
m(T ) = m(T

′

). On the otherhand, if we add l pendant edges to a cutvertex of

T , then we obtain another tree T
′′

with k + l endvertices. Then by Corollary
2.7, m(T

′

) = m(T ) + l.

Now, we proceed to characterize graphs G for which m(G) = m(G
′

), where

G
′

is obtained from G by adding l pendant edges.

Theorem 4.2. Let G
′

be a graph obtained from a connected graph G by adding

l pendant edges uivi(1 ≤ i ≤ l), where ui ∈ V (G) and vi /∈ V (G). Then

m(G) = m(G
′

) if and only if l ≤ m(G) and {u1, u2, ..., ul} is a subset of some

minimum monophonic set of G.

Proof. Let l ≤ m(G) and let {u1, u2, ..., ul} be a subset of some minimum

monophonic set S of G. Let S
′

= (S − {u1, u2, ..., ul})
⋃
{v1, v2, ..., vl}. Then

|S′| = |S|. We show that S
′

is a monophonic set of G
′

. Let z ∈ V (G
′

)− S
′

. If

z = ui (1 ≤ i ≤ l), then z lies on every vi − w monophonic path in G
′

, where

w ∈ S
′

, since ui is the only vertex adjacent to vi. So we may assume that
z 6= ui(1 ≤ i ≤ l). Since z is a vertex of G and S is a monophonic set of G, it
follows that z lies on some x − y monophonic path P in G for some x, y ∈ S.
Then by an argument similar to the one used in the proof of Theorem 4.1, we
can show that S

′

is a monophonic set of G
′

. Hence m(G′) ≤ |S′| = |S| = m(G).
Now, the result follows from Theorem 4.1.

Conversely, let m(G) = m(G
′

). Suppose that l > m(G). Since each vi(1 ≤

i ≤ l) is an endvertex of G
′

, by Theorem 2.3, m(G
′

) ≥ l. Hence m(G
′

) >

m(G), which is a contradiction. Thus l ≤ m(G
′

). Now, let S
′

be a minimum

monophonic set of G
′

. Since each ui (1 ≤ i ≤ l) is a cutvertex of G
′

, it follows

from Theorem 2.6 that ui /∈ S
′

for 1 ≤ i ≤ l. Since each vi(1 ≤ i ≤ l) is

an endvertex of G
′

, it follows from Theorem 2.3 that vi ∈ S
′

for 1 ≤ i ≤ l.
Let S = (S

′

− {v1, v2, ..., vl})
⋃
{u1, u2, ..., ul}. Then S is a subset of V (G) and

|S| = |S
′

|. Then, as in the proof of Theorem 4.1, S is a monophonic set of G.

Since |S| = |S
′

| = m(G
′

) = m(G), it follows that S is a minimum monophonic
set of G that contains {u1, u2, ..., ul}. �

Theorem 4.3. For each triple a, b and l of integers with 2 ≤ a ≤ b, 1 ≤ l ≤ b,
and a+l−b ≥ 0, there exists a connected graph G with m(G) = a and m(G

′

) = b,

where G
′

is a graph obtained by adding l pendant edges to G.

Proof. Let G be a tree with number of endvertices a. Let G
′

be a graph obtained
by adding b − a pendant edges to a cutvertex of G and also adding l + a − b
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pendant edges each with different endvertices of G. Then G
′

is another tree with
b endvertices. By Corollary 2.7, m(G) = a and m(G

′

) = b. �
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