DOI QR코드

DOI QR Code

MODULES WHOSE CLASSICAL PRIME SUBMODULES ARE INTERSECTIONS OF MAXIMAL SUBMODULES

  • Arabi-Kakavand, Marzieh (Department of Mathematical Sciences Isfahan University of Technology) ;
  • Behboodi, Mahmood (Department of Mathematical Sciences Isfahan University of Technology, School of Mathematics Institute for Research in Fundamental Sciences (IPM))
  • Received : 2013.03.13
  • Published : 2014.01.31

Abstract

Commutative rings in which every prime ideal is an intersection of maximal ideals are called Hilbert (or Jacobson) rings. We propose to define classical Hilbert modules by the property that classical prime submodules are intersections of maximal submodules. It is shown that all co-semisimple modules as well as all Artinian modules are classical Hilbert modules. Also, every module over a zero-dimensional ring is classical Hilbert. Results illustrating connections amongst the notions of classical Hilbert module and Hilbert ring are also provided. Rings R over which all modules are classical Hilbert are characterized. Furthermore, we determine the Noetherian rings R for which all finitely generated R-modules are classical Hilbert.

Keywords

References

  1. S. A. Amitsur and C. Procesi, Jacobson rings and Hilbert algebras with polynomial identities, Ann. Mat. Pura Appl. (4) 71 (1966), 61-72. https://doi.org/10.1007/BF02413733
  2. A. Azizi, Weakly prime submodules and prime submodules, Glasg. Math. J. 48 (2006), no. 2, 343-346. https://doi.org/10.1017/S0017089506003119
  3. M. Baziar and M. Behboodi, Classical primary submodules and decomposition theory of modules, J. Algebra Appl. 8 (2009), no. 3, 351-362. https://doi.org/10.1142/S0219498809003369
  4. M. Baziar, M. Behboodi, and H. Sharif, Uniformly classical primary submodules, Comm. Algebra 40 (2012), no. 9, 3192-3201. https://doi.org/10.1080/00927872.2011.561510
  5. M. Behboodi, Classical prime submodules, Ph.D Thesis, Chamran University Ahvaz Iran 2004.
  6. M. Behboodi, A generalization of the classical krull dimension for modules, J. Algebra 305 (2006), no. 2, 1128-1148. https://doi.org/10.1016/j.jalgebra.2006.04.010
  7. M. Behboodi, On weakly prime radical of modules and semi-compatible modules, Acta Math. Hungar. 113 (2006), no. 3, 239-250.
  8. M. Behboodi, A generalization of Baer's lower nilradical for modules, J. Algebra Appl. 6 (2007), no. 2, 337-353. https://doi.org/10.1142/S0219498807002284
  9. M. Behboodi, On the prime radical and Baer's lower nilradical of modules, Acta Math. Hungar. 122 (2009), no. 3, 293-306. https://doi.org/10.1007/s10474-008-8028-3
  10. M. Behboodi and H. Koohy, Weakly prime modules, Vietnam J. Math. 32 (2004), no. 2, 185-195.
  11. M. Behboodi and M. J. Noori, Zariski-like topology on the classical prime spectrum of a module, Bull. Iranian Math. Soc. 35 (2009), no. 1, 255-271.
  12. M. Behboodi and S. H. Shojaei, On chains of classical prime submodules and dimension theory of modules, Bull. Iranian Math. Soc. 36 (2010), no. 1, 149-166.
  13. J. Dauns, Prime modules, J. Reine Angew. Math. 298 (1976), 156-181.
  14. M. Ferrero and M. M. Parmenter, A note on Jacobson rings and polynomial rings, Proc. Amer. Math. Soc. 105 (1989), no. 2, 281-286. https://doi.org/10.1090/S0002-9939-1989-0929416-7
  15. K. Fujita and S. Itoh, A note on Noetherian Hilbert rings, HiroshimaMath. J. 10 (1980), no. 1, 153-161.
  16. O. Goldman, Hilbert rings and the Hilbert Nullstellensatz, Math. Z. 54 (1951), 136-140. https://doi.org/10.1007/BF01179855
  17. K. R. Goodearl and R. B. Warfild, An Introduction to Noncommutative Noetherian Rings, London Mathematical socity. Student Texts 16, Camberidge University Press, Cambrige 1989.
  18. T. Hungerford, Algebra, Springer-verlag 1997.
  19. A. Kaucikas and R.Wisbauer, Noncommutative Hilbert rings. J. Algebra Appl. 3 (2004), no. 4, 437-443. https://doi.org/10.1142/S0219498804000964
  20. M. Maani Shirazi and H. Sharif, Hilbert modules, Int. J. Pure Appl. Math. 20 (2005), no. 1, 1-7.
  21. C. Procesi, Noncommutative Jacobson rings, Ann. Scuola Norm. Sup. Pisa 21 (1967), 281-290.
  22. L. J., Jr. Ratliff, Hilbert rings and the chain condition for prime ideals, J. Reine Agnew. Math. 283/284 (1976), 154-163.
  23. J. F. Watters, Polynomial extensions of Jacobson rings, J. Algebra 36 (1975), no. 2, 302-308. https://doi.org/10.1016/0021-8693(75)90105-2
  24. J. F. Watters, The Brown-McCoy radical and Jacobson rings, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astron. Phys. 24 (1976), no. 2, 91-99.
  25. R. Wisbauer, Foundations of Modules and Ring Theory, Gordon and Breach Reading, 1991.