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요  약

내  암호화 방식은 비 키와 암호문 사이에 인 그 인 계를 제공하는 암호학  리미티 이다. 본 

논문은 완 한 속성 은닉 보호를 수행하는 새로운 IPE 방식을 제안한다. 제안한 IPE 방식은 합성 수의 

bilinear groups에 기반한다. 본 논문에서는 이  암호화 시스템 체계를 사용하여 제안한 IPE의 완 한 속

성 은닉 보호를 증명한다. 성능 분석에서 기존의 IPE 방식들과 제안한 IPE 방식의 연산량과 메모리 할당량

을 비교한다. 

Abstract

Inner product encryption (IPE)　scheme is a cryptographic primitive that provides fine grained relations between secret keys 

and ciphertexts. This paper proposes a new IPE scheme which achieves fully attribute hiding security. Our IPE scheme is based 

on bilinear groups of a composite order. We prove the fully attribute  hiding security of our IPE by using dual encryption system 

framework. In performance analysis, we compare the computation cost and memory requirement of our proposed IPE to other 

existing IPE schemes.

Keywords : functional encryption, inner product encryption, attribute based encryption

Ⅰ. Introduction

Nowadays the needs of privacy and security of 
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data distribution over a public network becomes 

eminent by emerging popularity of cloud systems. In 

a public cloud computing model, users can upload 

their sensitive data or query for private data by 

relying on a provider which is assumed to be honest 

or at least semi-honest[1]. Traditional approaches such 

as relying authentication and authorization to one 

trusted server are not comply to the characteristics of 

cloud system. Distributing security services across all 

parties in the system can overcome the problem in 

traditional approach. However, a traditional public key 
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crypto system can not easily adapted to provide such 

security since a public key only related to one private 

key. We need an encryption scheme that can express 

complex relation between secret keys and ciphertexts.

Predicate encryption allows complex relation 

between secret keys and ciphertexts. The secret keys 

in a predicate encryption scheme are associated to a 

predicate   with a parameter   and the ciphertexts 

are associated by a parameter  . The decryption 

only work only if    . There are 3 

subclasses of predicate encryption: anonymous 

identity based encryption which supports a identity 

equality predicate[2～3], hidden vector encryption 

scheme which supports a conjunctive combination of 

equality predicate[4～6] and inner product encryption 

(IPE)　scheme which supports polynomial evaluation, 

conjunctions, and disjunctions for attribute based 

encryption[7～14].

The IPE scheme uses vector of attributes 

∈  and an inner product function to define its 
predicate. There are two security definitions for IPE 

scheme: payload hiding and attribute hiding[7]. An 

IPE scheme is called payload hiding if the attacker 

learn nothing about the message   from the 

challenge ciphertext 


 where ∈  in an 

indistinguishable game. An IPE is called attribute 

hiding if the attacker learn nothing about the 

challenge vector attributes   from the challenge 

ciphertext 


. 

The security of an IPE scheme is proven under 

indistinguishability game with a presence of a chosen 

plaintext (ciphertext) attacker under full or selective 

security definition. If the challenge plaintexts and 

vectors of attributes are chosen before the game is 

started then the IPE scheme　 is proven under 

selective security[15]. Otherwise, the IPE is proven 

under full security definition
[16]
. 

The first inner product encryption was proposed by 

[7～8] proven under selective security and [9～13] 

achieved full security IPE scheme by using dual 

encryption technique from [14]. Based on 

payload/attribute hiding, [10] achieves payload hiding  

IPE scheme, [9] achieves weakly attribute hiding and 

[11～14] achieves attribute-hiding.

One of limitations of many existing IPE schemes is 

attribute vectors bounded by public parameters. The 

length of attributes vectors are limited to a constant. 

This limitation comes from the fact that the 

parameters for secret key and encryption are settled 

once the public parameters have been set. The first 

attribute based encryption that present unbounded 

version of an attribute based encryption scheme is 

proposed in [17]. While the only unbounded IPE 

known so far presented in [13]. 

In this paper, we propose an inner product 

encryption scheme that achieves full and attribute 

hiding security definition where the length of vectors 

in ciphertexts and secret keys are not bounded to a 

constant length in public parameters. Our 

construction achieves attribute hiding and adaptive 

security by proving the scheme under 

indistinguishable game by using complexity 

assumption from sub group problem and we achieve 

unboundedness by using Lagrange interpolation of 

prechosen random points. The proposed IPE　scheme 

has different structure with existing unbounded fully 

secure and attribute hiding IP　 scheme　 [13]. 

Moreover, the proposed IPE scheme has advantages 

from [13] that the length of ciphertext/secret key is 

shorter than that in [13]. Implicitly, the number of 

pairing computing for decryption in ours is lesser 

than that in [13].

II. Definitions

In this section, we present definitions of an inner 

product encryption and its security, composite bilinear 

groups and complexity assumptions for building our 

scheme.
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2.1 Inner Product Encryption Scheme

Let ∈  be attributes vector in secret key and 
ciphertext space. We define a predicate:




   i f〈xy〉  otherwise (1)

Where  ⋯ , 
 ⋯ , and 

〈〉 ⋯  is a notation for inner product 
between   and  . An inner product encryption 

scheme consists the following algorithms:

←  with   is a security 

parameter and contains the information of minimum 

vector attributes length. The setup algorithm returns 

a set of public parameters   and a master key 

.

←
  returns a secret key 

 corresponds to attribute 
 . 



←  where   is a plaintext 

from plaintext space. The encryption algorithm 

returns a ciphertext 

 associated with a vector 

attribute  .

⊥←  . The decryption 

algorithm returns the plaintext   or an 

indistinguished symbol ⊥ .

An IPE system should satisfy the following 

correctness requirement: for all   generated 

by  , for any key ←
  

and any ciphertext ←
  we 

have:

    i f〈〉  (2)

2.2 Security of IPE scheme 

An inner product encryption scheme over vector 

attributes space ∈  is an attribute hiding and 
full security with the presence of a chosen plaintext 

adversary . if for all PPT adversaries , the 

advantage of   in the following game is negligible in 

the security parameter :

Setup phase. In setup phase, the challenger   

runs   and gives public parameter   to 

adversary   and keep the master key   for itself.

Phase 1. In phase 1, the adversary   makes   

queries for secret key associated to   vector 

attributes ⋯
  for the challenger  . For each 

-th query,   gives ←
  to .

Challenge. In challenge phase, the adversary   

gives the challenger   two tuples   and 

  with ∈  (plaintext space) with the 
restrictions:

Payload hiding. If ≠  None of vector 

attributes   in 
⋯
  queried in phase 1 

satisfy 〈〉〈〉. 
Attribute hiding.. If     then for any key 

query   in ⋯
  satisfied 

〈〉〈〉. 
The challenger   throws a binary dice ←  and 

then sends ←


  to the 

adversary 

Phase 2. Repeat phase 1, to query ⋯
  

with the same restriction with step 3. The challenger 

give the corresponding key 

←
  to  .

Guess. At the end of game, the adversary   

submit a guess ′  for  . The adversary   wins the 
game if   ′ .

The advantage for the adversary   in above game is 

defined as:

Adv  Pr    ′  
  (3)
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Relaxed version of attribute hiding that restrict 

only to 〈〉〈〉≠  (the attacker can only 
queried the vector that does not satisfy inner product 

predicate) is called weakly attribute hiding.

2.3 Composite Order Bilinear Groups 

Let a group generator algorithm gen   produces 
the following set GGTe  with   is a composite 
number produces by four distinct primes , 

G  is an additive group, GT  is a multiplicative group 
with order , and e  is a bilinear map G× G→GT  
that satisfied the following characteristics:

Bilinearity, ∀∈G  and ∀∈ZN  we have: 
e e.
Non-degeneration, ∃ｇ∈G  such that e≠.

We assume operation in G , GT  and bilinear map e  
are all computable in time polynomial of  . We point 

out that elements from different subgroup of G  are 
orthogonal each other. That is, let denotes sub group 

of G  order of   as G, if ∈G  and ∈G   then 
e    if ≠.

2.4 General Subgroup Decision Problem

We use variants of subgroup decision problem 

assumptions from [18]. The assumptions are listed in 

Table 1. 

No Set Given (  ) Decide

1 
∈G
∈G

2 
∈G
∈G

3 


 
 e
　 ∈G

4












 

















 


∈G

표 1. 가정들

Table 1. Assumptions.

We define the advantage for an polynomial time 

algorithm   in decisional game for breaking 

Assumption 1,2,3 or 4: given a set   from -th row 

in Table 1 and  , where ∈   to be:

Adv   
Pr    Pr     (4)

Ⅲ. The Proposed IPE Scheme 

Our attribute hiding inner product encryption 

scheme consists of 4 algorithms:

. Using the security parameter , Setup 

runs a group generator gen   and receives 
  GGTe . The Setup algorithm implicitly 
declares that Z  as the attributes space.
The Setup algorithm chooses randomly ∈G . 
∈G   and ⋯⋯

⋯∈G  where ⋯⋯

⋯  are computed through exponentiation of 

 . Next, it chooses randomly  ⋯

⋯ ⋯∈Z, Then it creates 3 

polynomial functions: 

    ⋯
 . (5)

    ⋯
 (6)

    ⋯
  (7)

Then, it computes Ye  and publishes 
public parameters   as follows:

  







  




 ⋯

 


⋯




⋯

Y










(8)

with three public functions UVW ZN→G  
defined as:
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U 









 i f ≦ 



 U∆  otherwise  (9)

V 









  i f ≦ 



 V∆  otherwise (10)

W 









 i f ≦ 



 W∆  otherwise (11)

where  ⋯ and ∆  is called Lagrange 
coefficient defined as follows:

∆  
∀∈≠

 
 (12)

By using Lagrange interpolation, the public functions in 

Equation 9, 10 or 11 implicitly computes U , 
V   or U   respectively. Note that 

⋯


⋯


⋯

  are exposed 

in the public parameter. UVW
At the end the Setup algorithm keeps the master 

key   for it self. The master key is computed as 

follows:

   (13)

 ⋯   . To generate 

a secret key   associated with a vector attributes 

 , the   algorithm chooses randomly ∈ZN, 
′⋯∈　 G  using exponentiation of  . 
Next, it computes:

  




 






   
 


(14)

  
′ (15)

For   ⋯  the KeyGen algorithm computes:

  


   


(16)

At the end, the   algorithm returns 

   
 .

 ⋯ . To encrypt a plaintext 

∈G , associated with a vector attributes  . First, 
the   algorithm chooses randomly ∈ZN  and 
′⋯∈　 G  using exponentiation of . 
Next, it computes:

  Y  (17)

  
 (18)

  


 V


′  (19)

For   ⋯  the   algorithm computes:

  UW  (20)

At the end, the   algorithm returns 



  

 .

 . The decryption algorithm 

returns   if 〈〉  Otherwise, it returns ⊥ .

The correctness of decryption algorithm is shown 

as follows:

First the decryption algorithm computes 

 e  which yields: 

  e 
   

 






   e 
(21)

then it computes  e  which yields:

  e 
  

 



 
e  (22)
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and also computes  




e   which yields:

 e
〈〉

 




 






 (23)

 At the end the decryption computes:

 


 e 〈 〉 (24)

The decryption can recover   from   in 

Equation 24 only if 〈〉  as required for 
satisfying correctness of an IPE scheme.

Ⅳ. Security of the Proposed IPE Scheme

In this section, we prove the security of our 

proposed IPE that satisfying full and attribute hiding 

security. Dual encryption system from Security of the 

proposed IPE scheme used dual encryption system in 

[14] to prove that our scheme achieves full security 

definition in indistinguishable game with the presence 

of chosen-plaintext attacker. While for proving that 

the proposed IPE scheme achieves attribute-hiding 

the simulation includes that the attacker can not 

distinguish between the challenge ciphertext 

associated with the real challenge vector attributes 

  and random elements.

4.1 Semifunctional Secret Key and Ciphertext 

Semifunctional version of a secret key and a 

ciphertext are used in proof only to achieve full 

security definition. A semifunctional secret key and 

ciphertext behaves similar to a normal version, 

however the decryption between a semifunctional 

secret key and a semifunctional ciphertext should be 

failed. Our proof exploits elements from subgroup G   
as it is orthogonal to elements from other subgroups 

(which are used in normal version of secret key and 

ciphertext). 

(1) Semifunctional secret key

A generator   of G   is used to generate 
semifunctional secret key . A semifunctional 

secret key for a vector attributes  ⋯   is 

generated as follows: 

(1) Call   algorithm to generate a normal 

secret key for  ⋯  :

←
 , where 

  ′′′  
(2) Choose  ⋯ ⋯∈Z  
randomly.

(3) Generate a semifunctional secret key type:

 

  









  ′ 
  ′
    ′   i   











(25)

 

(2) Semifunctional ciphertext

A semifunctional ciphertext 


 for a vector 

attributes  ⋯   is generated as follows: 

(1) Call   algorithm to generate a 

normal ciphertext for  ⋯  :



← , where 



 ′′′′  

(2) Choose ⋯ ⋯ ∈Z  
randomly.

(3) Generate a semifunctional secret key:




 








′  ′
  ′ 
   ′  i  

l










(26)

The decryption between a semifunctional secret 

key type 1   and a ciphertext   where 

〈〉  produces a blinding factor to the plaintext 
with an element from G :
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(27)

If  ,  




     and 






    then we have a nominal semifunctional 

secret key that can decrypt semi functional 

ciphertext.

4.2 Security Games

The full security proof used reduction of 

indistinguishable games. The games are defined as 

follow:

(1)  : this game is the same as security 

definition given above. The challenger   returns 

normal secret keys in secret key queries phase 

and a normal challenge ciphertext in challenge 

phase.

(2)  : this game is the same as 

except at challenge phase the challenger   

returns a semifunctional ciphertext.

(3) : this game is the same as   

except for the first   secret key queries the 

challenger   returns semifunctional secret keys. 

While for the rest of secret key queries the 

challenger returns normal secret keys

(4) : this game is the same as   

where all secret key queries is answered by 

semifunctional secret key type 2 but in challenge 

phase this game return a random element form 

GT  for   in the challenged ciphertext 




. The   is used to show 

payload hiding. security of the scheme.

(5) : this game is the same as 

  with addition in challenge phase this 

game return a random element form G   for 

  in the challenged ciphertext . 

(6) : this game is the same as 

  with addition in challenge phase this 

game return a random element form G  for all 
  in the challenged ciphertext . 

  is used to show attribute hiding 

security of the scheme.

4.3 Security Game Reductions

Our proof used a reduction method to show that 

  is indistinguishable with   in a 

step-by-step reduction manner. We have to prove the 

following reductions:

(1)  ≈  .

(2)   ≈ 

(3) ≈ 

(4)  ≈ 

(5)  ≈ 

Where ≈   is defined as for any 

polynomial time attacker  , it can not distinguish 

whether it interacts with   or  .

Lemma 1. Suppose there exists a PPT algorithm   

that have Adv Adv   then there exists an 
algorithm   which have advantage   in breaking 

Assumption 1.

Proof. Given   GGTe and   
from Assumption 1. We can build algorithm   

simulates indistinguishable game with algorithm   as 

an adversary. The game runs as follows:

Setup phase, algorithm   do as   

algorithm in Section 3 by setting 

   
      where ∈Z  and 

gives public parameters   to algorithm  .
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Phase 1 and 2, algorithm   can answer all 

secret key queries from algorithm   since it 

knows the master key  .

Challenge phase, algorithm   receives 

  from algorithm  . Then, 

algorithm   tosses a binary coin ←  and 

set the challenge ciphertext 




   

   for the 

challenge vector attributes   ⋯   as 

follows :

  e  (28)

   (29)

  
 

 



   

′ (30)

For   ⋯  computes:

  
    (31)

where  ∈Z  and polynomials   
are from the setup phase.

Analysing the game, when ∈G , we set  
  

  then the challenge ciphertext has the same 

distribution with normal ciphertext. When ∈G ,. 
The algorithm   sets  


  and    mod  

which implicitly set    mod p c, 
  

  



modp  and    mod p . 
Even though reuse algorithm   reuses 

⋯  ⋯  ⋯   their values 

in mod   are uncorrelated with their values in 
mod   according to Chinese remainder theorem. 
Hence when ∈G  the ciphertext in challenge 
phase has the same distribution with semifunctional 

ciphertext.

Therefore algorithm   properly simulates   

when ∈G  and   when ∈G . This 

completes our proof. 

Lemma 2. Suppose there exists a PPT algorithm   

that have Adv  Adv   then there exists an 
algorithm   which have advantage   in breaking 

Assumption 2.

Proof. Given 

  GGTe and   from 
Assumption 2, we can build algorithm   simulates 

indistinguishable game with algorithm   as an 

adversary. The game runs as follows:

Setup phase, algorithm   do as   

algorithm in Section 3 by setting 

   
      where ∈Z  and 

gives public parameters   to algorithm .

Phase 1 and 2, Algorithm   makes   key 

queries: ⋯
 . There are 3 cases on how 

algorithm   answers the key query for -th 

query:

(1) For   . First, algorithm   chooses 

 ′ ⋯∈Z , then algorithm   
answers the -th key query for 

 ⋯   with   
  

where

  



 






      ′


 

(32)

  
 ′

 ′ (33)

  


   ′

 
 

 
 (34)

In this case, algorithm   returns a 

semifunctional secret key for each query. Let us 

define   
 , then algorithm   creates a 

semifunctional secret key by setting    ′ , 
 mod,  mod,    mod, 
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   mod. and    mod.
(2) For   , algorithm   uses   from 

assumption to create secret key 


 

  for  ⋯  

where

  



 





     


 ′ (35)

  
 ′ (36)

  


   


′ (37)

(3) For   , creates normal secret key for 

 ⋯  . algorithm   can produce 

normal secret key since it knows the master 

key .

Challenge phase, algorithm   sets the challenge 

ciphertext 


   

   for 
  ⋯   as follows :

  e  (38)

    (39)

  
 

 



   

′ (40)

For   ⋯  computes:

   
     (41)

where  ∈Z  and polynomials   
are from the setup phase. 

In this phase, algorithm   creates a 

semifunctional ciphertext for the challenge vector 

attributes by setting 

, and implicitly 

sets 
 

, 

   ⋯ mod, 

     mod  and   mod
Guess phase, at the end   outputs ′  as a guess 
for  . Algorithm   then outputs whatever   

outputs.

Analyzing the game, let us consider in secret key 

query phase in case   . We have the following 

two observations: (1) When ∈ G , the algorithm 
  sets  

″  then the secret key has the 
same distribution with a normal secret key. (2) When 

∈ G , the algorithm   sets  ″  
and implicitly sets  








 mod,  

 

 mod, and  
 mod. In this case, 

the -th secret key has the same distribution with a 

semifunctional secret key. 

Since the restriction for payload hiding is none of 

vector attributes   in 
⋯
  queried in phase 1 

and 2 satisfy 〈〉〈〉. then 

⋯ ⋯   are independent and 

randomly distributed. Furthermore, algorithm   can 

not test itself whether the -th secret key is a 

semifunctional or a normal key by doing decryption 

test using   which satisfied 〈〉〈〉  
because in this case the secret key is a nominal 

semifunctional or a normal key which both can 

decrypt the challenge ciphertext.

Thus algorithm   properly simulates    

when ∈G  and   when ∈G . This 
completes our proof. 

Lemma 3. Suppose there exists a PPT algorithm   

that have AdvAdv   then there exists 
an algorithm   which have advantage   in breaking 

Assumption 3.

Proof. Algorithm   is given 


 

where     GGTe  and   from 
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assumption 3. Then, algorithm   plays an 

indistinguishable game with   as adversary.. The 

game runs as follows:

Setup phase, algorithm   sets public parameters 

as follows: First, it chooses randomly 

 ⋯⋯ ⋯∈Z , then 
it creates 3 polynomial functions as in Equation 5, 

6 and 7. It sets         
  

and compute all element in   by exponentiation 

of  . Algorithm   computes 

Yee , sets public parameters 
  as Equation 8 and send public parameters   

to algorithm  .

Phase 1 and 2, Algorithm   always answer 

secret key query with a semifunctional secret key. 

After receiving -th vector attributes 

 ⋯  , algorithm   chooses 

 ′   ⋯⋯ ∈Z  and sets

  


 






      ′

 (42)

 
′

 (43)

 


  ′


 





   (44)

Algorithm   returns for all query with a 

semifunctional secret key by setting   
 , 

  mod.   mod,    mod . 

and    mod.
Challenge phase, algorithm   sets the challenge 

ciphertext 


  

  for 

  ⋯   as follows:

    (45)

  
  (46)

    
 

 



   

′ (47)

For   ⋯  computes

  
 

     (48)

where ∈Z  and polynomials   are 
from the setup phase. 

By writing   
, algorithm   returns a 

ciphertext that elements  
  has the 

same distribution as a semifunctional ciphertext. 

Algorithm   implicitly sets   mod, 
  ⋯mod, 
  mod, and    mod. 
Guess phase, at the end   outputs ′  as a 
guess for  . Algorithm   then outputs whatever 

  outputs.

We have two observations: (1) when  e  
then the challenge ciphertext has the same 

distribution with a semifunctional ciphertext. (2) 

when 　 ∈G  then the challenge ciphertext has the 
same distribution with a semifunctional ciphertext 

except   is a random element from   . 

Thus algorithm   properly simulates   when 

 e  and   when 　 ∈G. This 
completes our proof. 

Lemma 4. Suppose there exists a PPT algorithm   

that have AdvA AdvA   then there 
exists an algorithm   which have advantage   in 

breaking Assumption 4.

Proof. Algorithm   is given 

 





 where 

    GGTe  and   from Assumption 4. 
Then, algorithm   plays an indistinguishable game 

with   as adversary.. The game runs as follows:

Setup phase, algorithm   sets public parameters 

as follows: First, it chooses randomly 

 ⋯⋯⋯∈Z, then it 
creates 3 polynomial functions as in Equation 5, 6 

and 7. It sets          and compute 
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all element in   by exponentiation of  . 

Algorithm   creates three polynomials and sets 

three public functions . At the end, algorithm 

sets public parameters   as 

  







  



 ⋯


 ⋯


 ⋯
Y eY Y  










 (49)

and send public parameters   to algorithm  .

Phase 1 and 2, Algorithm   should create a 

semifunctional secret key for each key query for 

vector attributes  ⋯  . For each query 

algorithm   chooses 

 ′  ′ ⋯′⋯ ∈Z  and sets the 
secret key as 

   
   where 

  



 ′  





    ′




 ′



(50)

  


 ′

 (51)

  
 


  ′


′ 

  (52)

This implicitly sets the randomness   ′ . 
According to Equation 50, 51 and 52 , all elements 

in 
 

  contains an element in 

  it show that the queried secret key has the 

same distribution with a semifunctional secret key.

Challenge phase, at some points, algorithm   

sends   two tuples   and  . 

Algorithm   throws a binary dice ← and 

sets the challenge ciphertext 




  

  for   ⋯  

where   is a random from   and compute the 

other elements as follows:

  
 (53)

  
 

  (54)

For   ⋯  computes:

  
 

    (55)

where ∈Z  and polynomials   are 
from the setup phase. The algorithm   implicitly 

sets ⋯   ⋯   to random values.

Guess. Algorithm   then outputs whatever   

outputs.

We have the following analysis: when  
  

then   in 
  

  has the 

same distribution with   element in a 

semifunctional ciphertext, since the algorithm   

implicitly sets  . Otherwise, when ∈G  is 
a random element then   in 




  

  is a random element 

from G   . 
Therefore, when  

, algorithm   properly 

simulated   and when ∈G   is a 
random element from G , algorithm   properly 
simulated . This completes our proof. 

Lemma 5. Suppose there exists a PPT algorithm   

that have AdvA   AdvA    then there 
exists an algorithm   which have advantage   in 

breaking Assumption 4.

Proof. The proof is similar to previous proof 

except when computing   and 




  

 . In setup phase the 

algorithm   selects randomly ∈Z  , creates 
three polynomials ′ ′′  as in Equation 
5, 6, and 7 then it sets   as
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KSW08 

[7]

LOS10

[10]

AL10

[9]

OT10

[11]

OT12a

 [12]

OT12b

[13]

Proposed 

IPE

 G G G G G G G
  

G  
G  

G  
G G  

G  
G


 
G
 G

 
G
 G

G
 G

 
G
 G


G
 G

 
G
 G

 
G
 G

Unbounded/Bounded bounded bounded bounded bounded bounded unbounded unbounded

Fully/Selective selective fully fully fully fully fully fully

Fully(Weakly)-AH/

PH

fully-

AH

weakly-

AH
PH

weakly-

AH

fully-

AH

fully-

AH

fully-

AH

Assumption GSD n-eDDH
DLIN/

DDH
DLIN DLIN DLIN GSD

표 2. IPE 방식들의 비교

Table 2. Comparison of IPE schemes.

  







  



  ′ ⋯  ′ 
 ′ ⋯ ′ 
   

 ′ ⋯
   

 ′ Y eY Y  










(56)

In challenge phase the algorithm   sets the 

challenge ciphertext 
  

  

for   ⋯   where   is a random from 

  and

  
 (57)

  
 

 ′  (58)

Where ∈  is a random element from 
∈G . and For   ⋯ :

  
 

 ′  ′  (59)

We have the following analysis: when  
  

then all   in 
  

  has the 

same distribution with   element in a 

semifunctional ciphertext. By writing  
  then 

the algorithm   implicitly sets the polynomial 

  ′  . Otherwise, when ∈G  is a 

random element then all   in 




  

  is a random element 

from G  . 
Therefore, when  

, algorithm   properly 

simulated   and when ∈G  is a random 
element from G , algorithm   properly simulated 
 . This completes our proof. 

Theorem 1. If assumption 1,2,3 and 4 are hold then our 

unbounded inner product encryption scheme is fully 

secure and attribute hiding.

Proof. We have proved by Lemma 1, 2, 3, 4, and 

5 that   is indistinguishable from   if 

only assumption 1,2,3 and 4 are hold. Since in 

challenge phase is information theoretically hidden 

from the attacker   then   can obtain no advantage 

in breaking our unbounded IPE scheme in full 

security sense.

V. Performance

We compare the proposed IPE scheme to other 

existing IPE schemes(KSW08 in [7], LOS10 in [9], 

AL10 [10], OT10 in [11], OT12a in [12], and OT12b 

in [13]). Table 2 summarizes the performance 

comparison between the proposed IPE scheme and 



2014년 1월 전자공학회 논문지 제 51 권 제 1 호 69

Journal of The Institute of Electronics and Information Engineers   Vol. 51, NO. 1, January 2014

(69)

existing schemes.

The proposed IPE scheme achieves fully attribute 

hiding security. To the best our knowledge, only 

OT12a
[12]
 and OT12b

[13]
 achieve the same security 

level. Furthermore, the proposed IPE　does not bound 

the attribute vector in a secret key or ciphertext (in 

sense of the size of the attribute vector) where most 

existing IPE schemes except OT12b[13] bounds the 

attribute vector with the size of public parameters. 

The size of public parameters of the proposed IPE 

scheme is constant like OT12b[13] while others grow 

linearly/polynomially with the size of attributes vector 

(that bound the size of attributes vector in a secret 

key/ciphertext). Therefore only the proposed IPE and 

OT12b that presents unbounded and fully attribute 

hiding security IPE scheme. 

It is interesting to compare the secret 

key/ciphertext size of the proposed IPE scheme and 

OT12b. The size of a secret key/ciphertext in the 

proposed IPE scheme is smaller than in OT12b: 

 G  compare to  G. Therefore, the 
memory requirement for storing a secret 

key/ciphertext of the proposed IPE scheme is more 

efficient than in that OT12b[13]. In decryption, the 

number of pairing is the same as the size of a secret 

key/ciphertext. Thus, the number of pairing in 

decryption of the proposed IPE scheme is smaller 

than in that OT12b
[13]
. One downside of the proposed 

IPE scheme is that it uses composite order bilinear 

groups which known has more complexity in pairing 

computation than prime order bilinear groups. 

However, we can use transformation technique in 

[19] to transform the proposed IPE　scheme to prime 

order bilinear groups.

VI. Conclusion

The proposed IPE scheme achieves full and 

attribute hiding definition based on variant of 

decisional sub group problems assumptions using 

dual encryption framework. Furthermore, we relax 

the boundedness between public parameters and the 

size of attribute vectors used in key 

generation/encryption. The proposed IPE scheme 

allows arbitrary vector attributes length to be used in 

key generation or encryption algorithm. Compared to 

the existing IPE　schemes, the proposed IPE scheme　

achieves more advanced security definition than most 

existing IPE schemes and also has smaller size for a 

secret key/ciphertext than the same security existing 

IPE scheme. 
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