
2014년 1월 전자공학회 논문지 제 51권 제 1 호

Journal of The Institute of Electronics and Information Engineers Vol. 51, NO. 1, January 2014 http://dx.doi.org/10.5573/ieie.2014.51.1.057

(57)

논문 2014-51-1-9

Bilinear Group에서 속성 은닉을 가지는 안 한 내 암호화

방식

(Secure Inner Product Encryption Scheme with Attribute Hiding in

Bilinear Groups)

리 키 사디킨*, 박 호***

(Rifki Sadikin and YoungHo Parkⓒ)

요 약

내 암호화 방식은 비 키와 암호문 사이에 인 그 인 계를 제공하는 암호학 리미티 이다. 본

논문은 완 한 속성 은닉 보호를 수행하는 새로운 IPE 방식을 제안한다. 제안한 IPE 방식은 합성 수의

bilinear groups에 기반한다. 본 논문에서는 이 암호화 시스템 체계를 사용하여 제안한 IPE의 완 한 속

성 은닉 보호를 증명한다. 성능 분석에서 기존의 IPE 방식들과 제안한 IPE 방식의 연산량과 메모리 할당량

을 비교한다.

Abstract

Inner product encryption (IPE)　scheme is a cryptographic primitive that provides fine grained relations between secret keys

and ciphertexts. This paper proposes a new IPE scheme which achieves fully attribute hiding security. Our IPE scheme is based

on bilinear groups of a composite order. We prove the fully attribute hiding security of our IPE by using dual encryption system

framework. In performance analysis, we compare the computation cost and memory requirement of our proposed IPE to other

existing IPE schemes.

Keywords : functional encryption, inner product encryption, attribute based encryption

Ⅰ. Introduction

Nowadays the needs of privacy and security of

* 정회원, 경북 학교 자 기컴퓨터학부

(Kyungpook National University)
** 정회원, 경북 학교 산업 자공학과

(Kyungpook National University)
ⓒ
 Corresponding Author(E-mail: parkyh@knu.ac.kr)

※ 이 논문은 2012년도 정부(교육과학기술부)의 재원으

로 한국연구재단의 기 연구사업 지원을 받아 수행

된 것임(NRF-2012R1A1A4A01002603)

수일자: 2013년8월23일, 수정완료일: 2013년12월24일

data distribution over a public network becomes

eminent by emerging popularity of cloud systems. In

a public cloud computing model, users can upload

their sensitive data or query for private data by

relying on a provider which is assumed to be honest

or at least semi-honest[1]. Traditional approaches such

as relying authentication and authorization to one

trusted server are not comply to the characteristics of

cloud system. Distributing security services across all

parties in the system can overcome the problem in

traditional approach. However, a traditional public key

58 Bilinear Group에서 속성 은닉을 가지는 안전한 내적 암호화 방식 리프키 사디킨 외

(58)

crypto system can not easily adapted to provide such

security since a public key only related to one private

key. We need an encryption scheme that can express

complex relation between secret keys and ciphertexts.

Predicate encryption allows complex relation

between secret keys and ciphertexts. The secret keys

in a predicate encryption scheme are associated to a

predicate with a parameter and the ciphertexts

are associated by a parameter . The decryption

only work only if . There are 3

subclasses of predicate encryption: anonymous

identity based encryption which supports a identity

equality predicate[2～3], hidden vector encryption

scheme which supports a conjunctive combination of

equality predicate[4～6] and inner product encryption

(IPE)　scheme which supports polynomial evaluation,

conjunctions, and disjunctions for attribute based

encryption[7～14].

The IPE scheme uses vector of attributes

∈ and an inner product function to define its
predicate. There are two security definitions for IPE

scheme: payload hiding and attribute hiding[7]. An

IPE scheme is called payload hiding if the attacker

learn nothing about the message from the

challenge ciphertext

 where ∈ in an

indistinguishable game. An IPE is called attribute

hiding if the attacker learn nothing about the

challenge vector attributes from the challenge

ciphertext

.

The security of an IPE scheme is proven under

indistinguishability game with a presence of a chosen

plaintext (ciphertext) attacker under full or selective

security definition. If the challenge plaintexts and

vectors of attributes are chosen before the game is

started then the IPE scheme　 is proven under

selective security[15]. Otherwise, the IPE is proven

under full security definition
[16]
.

The first inner product encryption was proposed by

[7～8] proven under selective security and [9～13]

achieved full security IPE scheme by using dual

encryption technique from [14]. Based on

payload/attribute hiding, [10] achieves payload hiding

IPE scheme, [9] achieves weakly attribute hiding and

[11～14] achieves attribute-hiding.

One of limitations of many existing IPE schemes is

attribute vectors bounded by public parameters. The

length of attributes vectors are limited to a constant.

This limitation comes from the fact that the

parameters for secret key and encryption are settled

once the public parameters have been set. The first

attribute based encryption that present unbounded

version of an attribute based encryption scheme is

proposed in [17]. While the only unbounded IPE

known so far presented in [13].

In this paper, we propose an inner product

encryption scheme that achieves full and attribute

hiding security definition where the length of vectors

in ciphertexts and secret keys are not bounded to a

constant length in public parameters. Our

construction achieves attribute hiding and adaptive

security by proving the scheme under

indistinguishable game by using complexity

assumption from sub group problem and we achieve

unboundedness by using Lagrange interpolation of

prechosen random points. The proposed IPE　scheme

has different structure with existing unbounded fully

secure and attribute hiding IP　 scheme　 [13].

Moreover, the proposed IPE scheme has advantages

from [13] that the length of ciphertext/secret key is

shorter than that in [13]. Implicitly, the number of

pairing computing for decryption in ours is lesser

than that in [13].

II. Definitions

In this section, we present definitions of an inner

product encryption and its security, composite bilinear

groups and complexity assumptions for building our

scheme.

2014년 1월 전자공학회 논문지 제 51 권 제 1 호 59

Journal of The Institute of Electronics and Information Engineers Vol. 51, NO. 1, January 2014

(59)

2.1 Inner Product Encryption Scheme

Let ∈ be attributes vector in secret key and
ciphertext space. We define a predicate:

 i f〈xy〉 otherwise (1)

Where ⋯ ,
 ⋯ , and

〈〉 ⋯ is a notation for inner product
between and . An inner product encryption

scheme consists the following algorithms:

← with is a security

parameter and contains the information of minimum

vector attributes length. The setup algorithm returns

a set of public parameters and a master key

.

←
 returns a secret key

 corresponds to attribute
 .

← where is a plaintext

from plaintext space. The encryption algorithm

returns a ciphertext

 associated with a vector

attribute .

⊥← . The decryption

algorithm returns the plaintext or an

indistinguished symbol ⊥ .

An IPE system should satisfy the following

correctness requirement: for all generated

by , for any key ←

and any ciphertext ←
 we

have:

 i f〈〉 (2)

2.2 Security of IPE scheme

An inner product encryption scheme over vector

attributes space ∈ is an attribute hiding and
full security with the presence of a chosen plaintext

adversary . if for all PPT adversaries , the

advantage of in the following game is negligible in

the security parameter :

Setup phase. In setup phase, the challenger

runs and gives public parameter to

adversary and keep the master key for itself.

Phase 1. In phase 1, the adversary makes

queries for secret key associated to vector

attributes ⋯
 for the challenger . For each

-th query, gives ←
 to .

Challenge. In challenge phase, the adversary

gives the challenger two tuples and

 with ∈ (plaintext space) with the
restrictions:

Payload hiding. If ≠ None of vector

attributes in
⋯
 queried in phase 1

satisfy 〈〉〈〉.
Attribute hiding.. If then for any key

query in ⋯
 satisfied

〈〉〈〉.
The challenger throws a binary dice ← and

then sends ←

 to the

adversary

Phase 2. Repeat phase 1, to query ⋯

with the same restriction with step 3. The challenger

give the corresponding key

←
 to .

Guess. At the end of game, the adversary

submit a guess ′ for . The adversary wins the
game if ′ .

The advantage for the adversary in above game is

defined as:

Adv Pr ′
 (3)

60 Bilinear Group에서 속성 은닉을 가지는 안전한 내적 암호화 방식 리프키 사디킨 외

(60)

Relaxed version of attribute hiding that restrict

only to 〈〉〈〉≠ (the attacker can only
queried the vector that does not satisfy inner product

predicate) is called weakly attribute hiding.

2.3 Composite Order Bilinear Groups

Let a group generator algorithm gen produces
the following set GGTe with is a composite
number produces by four distinct primes ,

G is an additive group, GT is a multiplicative group
with order , and e is a bilinear map G× G→GT
that satisfied the following characteristics:

Bilinearity, ∀∈G and ∀∈ZN we have:
e e.
Non-degeneration, ∃ｇ∈G such that e≠.

We assume operation in G , GT and bilinear map e
are all computable in time polynomial of . We point

out that elements from different subgroup of G are
orthogonal each other. That is, let denotes sub group

of G order of as G, if ∈G and ∈G then
e if ≠.

2.4 General Subgroup Decision Problem

We use variants of subgroup decision problem

assumptions from [18]. The assumptions are listed in

Table 1.

No Set Given () Decide

1
∈G
∈G

2
∈G
∈G

3

 e
　 ∈G

4

∈G

표 1. 가정들

Table 1. Assumptions.

We define the advantage for an polynomial time

algorithm in decisional game for breaking

Assumption 1,2,3 or 4: given a set from -th row

in Table 1 and , where ∈ to be:

Adv
Pr Pr (4)

Ⅲ. The Proposed IPE Scheme

Our attribute hiding inner product encryption

scheme consists of 4 algorithms:

. Using the security parameter , Setup

runs a group generator gen and receives
 GGTe . The Setup algorithm implicitly
declares that Z as the attributes space.
The Setup algorithm chooses randomly ∈G .
∈G and ⋯⋯

⋯∈G where ⋯⋯

⋯ are computed through exponentiation of

 . Next, it chooses randomly ⋯

⋯ ⋯∈Z, Then it creates 3

polynomial functions:

 ⋯
 . (5)

 ⋯
 (6)

 ⋯
 (7)

Then, it computes Ye and publishes
public parameters as follows:

 ⋯

⋯

⋯

Y

(8)

with three public functions UVW ZN→G
defined as:

2014년 1월 전자공학회 논문지 제 51 권 제 1 호 61

Journal of The Institute of Electronics and Information Engineers Vol. 51, NO. 1, January 2014

(61)

U

 i f ≦

 U∆ otherwise (9)

V

 i f ≦

 V∆ otherwise (10)

W

 i f ≦

 W∆ otherwise (11)

where ⋯ and ∆ is called Lagrange
coefficient defined as follows:

∆
∀∈≠

 (12)

By using Lagrange interpolation, the public functions in

Equation 9, 10 or 11 implicitly computes U ,
V or U respectively. Note that

⋯

⋯

⋯

 are exposed

in the public parameter. UVW
At the end the Setup algorithm keeps the master

key for it self. The master key is computed as

follows:

 (13)

 ⋯ . To generate

a secret key associated with a vector attributes

 , the algorithm chooses randomly ∈ZN,
′⋯∈　 G using exponentiation of .
Next, it computes:

(14)

′ (15)

For ⋯ the KeyGen algorithm computes:

(16)

At the end, the algorithm returns

 .

 ⋯ . To encrypt a plaintext

∈G , associated with a vector attributes . First,
the algorithm chooses randomly ∈ZN and
′⋯∈　 G using exponentiation of .
Next, it computes:

 Y (17)

 (18)

 V

′ (19)

For ⋯ the algorithm computes:

 UW (20)

At the end, the algorithm returns

 .

 . The decryption algorithm

returns if 〈〉 Otherwise, it returns ⊥ .

The correctness of decryption algorithm is shown

as follows:

First the decryption algorithm computes

 e which yields:

 e

 e
(21)

then it computes e which yields:

 e

e (22)

62 Bilinear Group에서 속성 은닉을 가지는 안전한 내적 암호화 방식 리프키 사디킨 외

(62)

and also computes

e which yields:

 e
〈〉

 (23)

 At the end the decryption computes:

 e 〈 〉 (24)

The decryption can recover from in

Equation 24 only if 〈〉 as required for
satisfying correctness of an IPE scheme.

Ⅳ. Security of the Proposed IPE Scheme

In this section, we prove the security of our

proposed IPE that satisfying full and attribute hiding

security. Dual encryption system from Security of the

proposed IPE scheme used dual encryption system in

[14] to prove that our scheme achieves full security

definition in indistinguishable game with the presence

of chosen-plaintext attacker. While for proving that

the proposed IPE scheme achieves attribute-hiding

the simulation includes that the attacker can not

distinguish between the challenge ciphertext

associated with the real challenge vector attributes

 and random elements.

4.1 Semifunctional Secret Key and Ciphertext

Semifunctional version of a secret key and a

ciphertext are used in proof only to achieve full

security definition. A semifunctional secret key and

ciphertext behaves similar to a normal version,

however the decryption between a semifunctional

secret key and a semifunctional ciphertext should be

failed. Our proof exploits elements from subgroup G
as it is orthogonal to elements from other subgroups

(which are used in normal version of secret key and

ciphertext).

(1) Semifunctional secret key

A generator of G is used to generate
semifunctional secret key . A semifunctional

secret key for a vector attributes ⋯ is

generated as follows:

(1) Call algorithm to generate a normal

secret key for ⋯ :

←
 , where

 ′′′
(2) Choose ⋯ ⋯∈Z
randomly.

(3) Generate a semifunctional secret key type:

 ′
 ′
 ′ i

(25)

(2) Semifunctional ciphertext

A semifunctional ciphertext

 for a vector

attributes ⋯ is generated as follows:

(1) Call algorithm to generate a

normal ciphertext for ⋯ :

← , where

 ′′′′

(2) Choose ⋯ ⋯ ∈Z
randomly.

(3) Generate a semifunctional secret key:

′ ′
 ′
 ′ i

l

(26)

The decryption between a semifunctional secret

key type 1 and a ciphertext where

〈〉 produces a blinding factor to the plaintext
with an element from G :

2014년 1월 전자공학회 논문지 제 51 권 제 1 호 63

Journal of The Institute of Electronics and Information Engineers Vol. 51, NO. 1, January 2014

(63)

(27)

If ,

 and

 then we have a nominal semifunctional

secret key that can decrypt semi functional

ciphertext.

4.2 Security Games

The full security proof used reduction of

indistinguishable games. The games are defined as

follow:

(1) : this game is the same as security

definition given above. The challenger returns

normal secret keys in secret key queries phase

and a normal challenge ciphertext in challenge

phase.

(2) : this game is the same as

except at challenge phase the challenger

returns a semifunctional ciphertext.

(3) : this game is the same as

except for the first secret key queries the

challenger returns semifunctional secret keys.

While for the rest of secret key queries the

challenger returns normal secret keys

(4) : this game is the same as

where all secret key queries is answered by

semifunctional secret key type 2 but in challenge

phase this game return a random element form

GT for in the challenged ciphertext

. The is used to show

payload hiding. security of the scheme.

(5) : this game is the same as

 with addition in challenge phase this

game return a random element form G for

 in the challenged ciphertext .

(6) : this game is the same as

 with addition in challenge phase this

game return a random element form G for all
 in the challenged ciphertext .

 is used to show attribute hiding

security of the scheme.

4.3 Security Game Reductions

Our proof used a reduction method to show that

 is indistinguishable with in a

step-by-step reduction manner. We have to prove the

following reductions:

(1) ≈ .

(2) ≈

(3) ≈

(4) ≈

(5) ≈

Where ≈ is defined as for any

polynomial time attacker , it can not distinguish

whether it interacts with or .

Lemma 1. Suppose there exists a PPT algorithm

that have Adv Adv then there exists an
algorithm which have advantage in breaking

Assumption 1.

Proof. Given GGTe and
from Assumption 1. We can build algorithm

simulates indistinguishable game with algorithm as

an adversary. The game runs as follows:

Setup phase, algorithm do as

algorithm in Section 3 by setting

 where ∈Z and

gives public parameters to algorithm .

64 Bilinear Group에서 속성 은닉을 가지는 안전한 내적 암호화 방식 리프키 사디킨 외

(64)

Phase 1 and 2, algorithm can answer all

secret key queries from algorithm since it

knows the master key .

Challenge phase, algorithm receives

 from algorithm . Then,

algorithm tosses a binary coin ← and

set the challenge ciphertext

 for the

challenge vector attributes ⋯ as

follows :

 e (28)

 (29)

′ (30)

For ⋯ computes:

 (31)

where ∈Z and polynomials
are from the setup phase.

Analysing the game, when ∈G , we set

 then the challenge ciphertext has the same

distribution with normal ciphertext. When ∈G ,.
The algorithm sets

 and mod

which implicitly set mod p c,

modp and mod p .
Even though reuse algorithm reuses

⋯ ⋯ ⋯ their values

in mod are uncorrelated with their values in
mod according to Chinese remainder theorem.
Hence when ∈G the ciphertext in challenge
phase has the same distribution with semifunctional

ciphertext.

Therefore algorithm properly simulates

when ∈G and when ∈G . This

completes our proof.

Lemma 2. Suppose there exists a PPT algorithm

that have Adv Adv then there exists an
algorithm which have advantage in breaking

Assumption 2.

Proof. Given

 GGTe and from
Assumption 2, we can build algorithm simulates

indistinguishable game with algorithm as an

adversary. The game runs as follows:

Setup phase, algorithm do as

algorithm in Section 3 by setting

 where ∈Z and

gives public parameters to algorithm .

Phase 1 and 2, Algorithm makes key

queries: ⋯
 . There are 3 cases on how

algorithm answers the key query for -th

query:

(1) For . First, algorithm chooses

 ′ ⋯∈Z , then algorithm
answers the -th key query for

 ⋯ with

where

 ′

(32)

 ′

 ′ (33)

 ′

 (34)

In this case, algorithm returns a

semifunctional secret key for each query. Let us

define
 , then algorithm creates a

semifunctional secret key by setting ′ ,
 mod, mod, mod,

2014년 1월 전자공학회 논문지 제 51 권 제 1 호 65

Journal of The Institute of Electronics and Information Engineers Vol. 51, NO. 1, January 2014

(65)

 mod. and mod.
(2) For , algorithm uses from

assumption to create secret key

 for ⋯

where

 ′ (35)

 ′ (36)

′ (37)

(3) For , creates normal secret key for

 ⋯ . algorithm can produce

normal secret key since it knows the master

key .

Challenge phase, algorithm sets the challenge

ciphertext

 for
 ⋯ as follows :

 e (38)

 (39)

′ (40)

For ⋯ computes:

 (41)

where ∈Z and polynomials
are from the setup phase.

In this phase, algorithm creates a

semifunctional ciphertext for the challenge vector

attributes by setting

, and implicitly

sets

,

 ⋯ mod,

 mod and mod
Guess phase, at the end outputs ′ as a guess
for . Algorithm then outputs whatever

outputs.

Analyzing the game, let us consider in secret key

query phase in case . We have the following

two observations: (1) When ∈ G , the algorithm
 sets

″ then the secret key has the
same distribution with a normal secret key. (2) When

∈ G , the algorithm sets ″
and implicitly sets

 mod,

 mod, and
 mod. In this case,

the -th secret key has the same distribution with a

semifunctional secret key.

Since the restriction for payload hiding is none of

vector attributes in
⋯
 queried in phase 1

and 2 satisfy 〈〉〈〉. then

⋯ ⋯ are independent and

randomly distributed. Furthermore, algorithm can

not test itself whether the -th secret key is a

semifunctional or a normal key by doing decryption

test using which satisfied 〈〉〈〉
because in this case the secret key is a nominal

semifunctional or a normal key which both can

decrypt the challenge ciphertext.

Thus algorithm properly simulates

when ∈G and when ∈G . This
completes our proof.

Lemma 3. Suppose there exists a PPT algorithm

that have AdvAdv then there exists
an algorithm which have advantage in breaking

Assumption 3.

Proof. Algorithm is given

where GGTe and from

66 Bilinear Group에서 속성 은닉을 가지는 안전한 내적 암호화 방식 리프키 사디킨 외

(66)

assumption 3. Then, algorithm plays an

indistinguishable game with as adversary.. The

game runs as follows:

Setup phase, algorithm sets public parameters

as follows: First, it chooses randomly

 ⋯⋯ ⋯∈Z , then
it creates 3 polynomial functions as in Equation 5,

6 and 7. It sets

and compute all element in by exponentiation

of . Algorithm computes

Yee , sets public parameters
 as Equation 8 and send public parameters

to algorithm .

Phase 1 and 2, Algorithm always answer

secret key query with a semifunctional secret key.

After receiving -th vector attributes

 ⋯ , algorithm chooses

 ′ ⋯⋯ ∈Z and sets

 ′

 (42)

′

 (43)

 ′

 (44)

Algorithm returns for all query with a

semifunctional secret key by setting
 ,

 mod. mod, mod .

and mod.
Challenge phase, algorithm sets the challenge

ciphertext

 for

 ⋯ as follows:

 (45)

 (46)

′ (47)

For ⋯ computes

 (48)

where ∈Z and polynomials are
from the setup phase.

By writing
, algorithm returns a

ciphertext that elements
 has the

same distribution as a semifunctional ciphertext.

Algorithm implicitly sets mod,
 ⋯mod,
 mod, and mod.
Guess phase, at the end outputs ′ as a
guess for . Algorithm then outputs whatever

 outputs.

We have two observations: (1) when e
then the challenge ciphertext has the same

distribution with a semifunctional ciphertext. (2)

when 　 ∈G then the challenge ciphertext has the
same distribution with a semifunctional ciphertext

except is a random element from .

Thus algorithm properly simulates when

 e and when 　 ∈G. This
completes our proof.

Lemma 4. Suppose there exists a PPT algorithm

that have AdvA AdvA then there
exists an algorithm which have advantage in

breaking Assumption 4.

Proof. Algorithm is given

 where

 GGTe and from Assumption 4.
Then, algorithm plays an indistinguishable game

with as adversary.. The game runs as follows:

Setup phase, algorithm sets public parameters

as follows: First, it chooses randomly

 ⋯⋯⋯∈Z, then it
creates 3 polynomial functions as in Equation 5, 6

and 7. It sets and compute

2014년 1월 전자공학회 논문지 제 51 권 제 1 호 67

Journal of The Institute of Electronics and Information Engineers Vol. 51, NO. 1, January 2014

(67)

all element in by exponentiation of .

Algorithm creates three polynomials and sets

three public functions . At the end, algorithm

sets public parameters as

 ⋯

 ⋯

 ⋯
Y eY Y

 (49)

and send public parameters to algorithm .

Phase 1 and 2, Algorithm should create a

semifunctional secret key for each key query for

vector attributes ⋯ . For each query

algorithm chooses

 ′ ′ ⋯′⋯ ∈Z and sets the
secret key as

 where

 ′

 ′

 ′

(50)

 ′

 (51)

 ′

′

 (52)

This implicitly sets the randomness ′ .
According to Equation 50, 51 and 52 , all elements

in

 contains an element in

 it show that the queried secret key has the

same distribution with a semifunctional secret key.

Challenge phase, at some points, algorithm

sends two tuples and .

Algorithm throws a binary dice ← and

sets the challenge ciphertext

 for ⋯

where is a random from and compute the

other elements as follows:

 (53)

 (54)

For ⋯ computes:

 (55)

where ∈Z and polynomials are
from the setup phase. The algorithm implicitly

sets ⋯ ⋯ to random values.

Guess. Algorithm then outputs whatever

outputs.

We have the following analysis: when

then in

 has the

same distribution with element in a

semifunctional ciphertext, since the algorithm

implicitly sets . Otherwise, when ∈G is
a random element then in

 is a random element

from G .
Therefore, when

, algorithm properly

simulated and when ∈G is a
random element from G , algorithm properly
simulated . This completes our proof.

Lemma 5. Suppose there exists a PPT algorithm

that have AdvA AdvA then there
exists an algorithm which have advantage in

breaking Assumption 4.

Proof. The proof is similar to previous proof

except when computing and

 . In setup phase the

algorithm selects randomly ∈Z , creates
three polynomials ′ ′′ as in Equation
5, 6, and 7 then it sets as

68 Bilinear Group에서 속성 은닉을 가지는 안전한 내적 암호화 방식 리프키 사디킨 외

(68)

KSW08

[7]

LOS10

[10]

AL10

[9]

OT10

[11]

OT12a

 [12]

OT12b

[13]

Proposed

IPE

 G G G G G G G

G
G

G
G G

G
G

G
 G

G
 G

G
 G

G
 G

G
 G

G
 G

G
 G

Unbounded/Bounded bounded bounded bounded bounded bounded unbounded unbounded

Fully/Selective selective fully fully fully fully fully fully

Fully(Weakly)-AH/

PH

fully-

AH

weakly-

AH
PH

weakly-

AH

fully-

AH

fully-

AH

fully-

AH

Assumption GSD n-eDDH
DLIN/

DDH
DLIN DLIN DLIN GSD

표 2. IPE 방식들의 비교

Table 2. Comparison of IPE schemes.

 ′ ⋯ ′
 ′ ⋯ ′

 ′ ⋯

 ′ Y eY Y

(56)

In challenge phase the algorithm sets the

challenge ciphertext

for ⋯ where is a random from

 and

 (57)

 ′ (58)

Where ∈ is a random element from
∈G . and For ⋯ :

 ′ ′ (59)

We have the following analysis: when

then all in

 has the

same distribution with element in a

semifunctional ciphertext. By writing
 then

the algorithm implicitly sets the polynomial

 ′ . Otherwise, when ∈G is a

random element then all in

 is a random element

from G .
Therefore, when

, algorithm properly

simulated and when ∈G is a random
element from G , algorithm properly simulated
 . This completes our proof.

Theorem 1. If assumption 1,2,3 and 4 are hold then our

unbounded inner product encryption scheme is fully

secure and attribute hiding.

Proof. We have proved by Lemma 1, 2, 3, 4, and

5 that is indistinguishable from if

only assumption 1,2,3 and 4 are hold. Since in

challenge phase is information theoretically hidden

from the attacker then can obtain no advantage

in breaking our unbounded IPE scheme in full

security sense.

V. Performance

We compare the proposed IPE scheme to other

existing IPE schemes(KSW08 in [7], LOS10 in [9],

AL10 [10], OT10 in [11], OT12a in [12], and OT12b

in [13]). Table 2 summarizes the performance

comparison between the proposed IPE scheme and

2014년 1월 전자공학회 논문지 제 51 권 제 1 호 69

Journal of The Institute of Electronics and Information Engineers Vol. 51, NO. 1, January 2014

(69)

existing schemes.

The proposed IPE scheme achieves fully attribute

hiding security. To the best our knowledge, only

OT12a
[12]
 and OT12b

[13]
 achieve the same security

level. Furthermore, the proposed IPE　does not bound

the attribute vector in a secret key or ciphertext (in

sense of the size of the attribute vector) where most

existing IPE schemes except OT12b[13] bounds the

attribute vector with the size of public parameters.

The size of public parameters of the proposed IPE

scheme is constant like OT12b[13] while others grow

linearly/polynomially with the size of attributes vector

(that bound the size of attributes vector in a secret

key/ciphertext). Therefore only the proposed IPE and

OT12b that presents unbounded and fully attribute

hiding security IPE scheme.

It is interesting to compare the secret

key/ciphertext size of the proposed IPE scheme and

OT12b. The size of a secret key/ciphertext in the

proposed IPE scheme is smaller than in OT12b:

 G compare to G. Therefore, the
memory requirement for storing a secret

key/ciphertext of the proposed IPE scheme is more

efficient than in that OT12b[13]. In decryption, the

number of pairing is the same as the size of a secret

key/ciphertext. Thus, the number of pairing in

decryption of the proposed IPE scheme is smaller

than in that OT12b
[13]
. One downside of the proposed

IPE scheme is that it uses composite order bilinear

groups which known has more complexity in pairing

computation than prime order bilinear groups.

However, we can use transformation technique in

[19] to transform the proposed IPE　scheme to prime

order bilinear groups.

VI. Conclusion

The proposed IPE scheme achieves full and

attribute hiding definition based on variant of

decisional sub group problems assumptions using

dual encryption framework. Furthermore, we relax

the boundedness between public parameters and the

size of attribute vectors used in key

generation/encryption. The proposed IPE scheme

allows arbitrary vector attributes length to be used in

key generation or encryption algorithm. Compared to

the existing IPE　schemes, the proposed IPE scheme　

achieves more advanced security definition than most

existing IPE schemes and also has smaller size for a

secret key/ciphertext than the same security existing

IPE scheme.

REFERENCES

[1] Dongyoung Koo, Junbeom Hur, and Hyunsoo

Yoon, “Secure and efficient data retrieval over

encrypted data using attribute-based encryption

in cloud storage,” Computers & Electrical

Engineering, vol. 39, no. 1, pp. 34-46, 2013.

[2] Boneh, D. and Franklin, M, “Identity-Based

Encryption from the Weil Pairing,” SIAM

Journal on Computing, vol. 32, no. 3, pp.

586-615, 2003.

[3] Boyen, Xavier and Brent Waters, “Anonymous

hierarchical identity-based encryption (without

random oracles).” CRYPTO2006, pp. 290-307,

2006.

[4] Park, J. H., and Lee D. H.. “A hidden vector

encryption scheme with constant-size tokens and

pairing computations,” IEICE transactions on

fundamentals of electronics, communications and

computer sciences, vol. 93, no. 9, pp. 1620-1631,

2010.

[5] Park, J. H., Lee, K., Susilo, W., and Lee, D. H.,

“Fully secure hidden vector encryption under

standard assumptions,” Information Sciences, vol.

232, pp. 188-207, 2013.

[6] De Caro, Angelo, Vincenzo Iovino, and Giuseppe

Persiano. “Fully secure hidden vector

encryption,” Pairing-Based Cryptography–

Pairing 2012. pp. 102-121, 2013.

[7] Katz, Jonathan, Amit Sahai, and Brent Waters.

“Predicate encryption supporting disjunctions,

polynomial equations, and inner products,”

EUROCRYPT2008, pp. 146-162, 2008.

[8] Agrawal, Shweta, David Mandell Freeman, and

Vinod Vaikuntanathan. “Functional encryption for

inner product predicates from learning with

70 Bilinear Group에서 속성 은닉을 가지는 안전한 내적 암호화 방식 리프키 사디킨 외

(70)

 자 소 개

리 키 사디킨(정회원)

1999년 Gadjah Mada 학교

 기공학과 학사

2004년 Indonesia 학교

 컴퓨터공학과 석사

2009년∼ 재 경북 학교

 자 기컴퓨터학부 박사과정

<주 심분야 : 정보보호, 네트워크보안>

박 호(정회원)-교신 자

1989년 경북 학교 자공학과

 학사

1991년 경북 학교 자공학과

 석사

1995년 경북 학교 자공학과

 박사

1996년∼2008년 상주 학교 자 기공학부 교수

2003년∼2004년 Oregon State Univ. 방문교수

2008년∼ 재 경북 학교 산업 자공학과 교수

<주 심분야 : 정보보호, 네트워크보안, 모바일 컴

퓨 >

errors,” ASIACRYPT2011, pp. 21-40, 2011.

[9] Lewko, Allison, et al. “Fully secure functional

encryption: Attribute-based encryption and

(hierarchical) inner product encryption,”

EUROCRYPT2010, pp. 62-91, 2010.

[10] Attrapadung, Nuttapong, and Benoît Libert.

“Functional encryption for inner product:

Achieving constant-size ciphertexts with

adaptive security or support for negation,”

Public Key Cryptography–PKC 2010, pp

384-402, 2010.

[11] Okamoto, Tatsuaki, and Katsuyuki Takashima.

“Fully secure functional encryption with general

relations from the decisional linear assumption,”

CRYPTO2010, pp. 191-208, 2010.

[12] Okamoto, Tatsuaki, and Katsuyuki Takashima.

“Adaptively attribute-hiding (hierarchical) inner

product encryption,” EUROCRYPT2012, pp.

591-608, 2012.

[13] Okamoto, Tatsuaki, and Katsuyuki Takashima.

“Fully secure unbounded inner-product and

attribute-based encryption,” ASIACRYPT2012,

pp. 349-366, 2012.

[14] Okamoto, Tatsuaki and, Katsuyuki Takashima,

“Efficient (Hierarchical) Inner-Product Encryption

Tightly Reduced from the Decisional Linear

Assumption,” IEICE Transactions on

Fundamentals of Electronics, Communications

and Computer Sciences, vol. E96-A, no. 1, pp.

42-52, 2013.

[15] Boneh, Dan, et al. “Chosen-ciphertext security

from identity-based encryption,” SIAM Journal

on Computing, vol. 36, no. 5, pp. 1301-1328,

2006.

[16] Waters, Brent. “Dual system encryption:

Realizing fully secure IBE and HIBE under

simple assumptions,” CRYPTO2009, pp. 619-636,

2009.

[17] Lewko, Allison, and Brent Waters. “Unbounded

HIBE and attribute-based encryption,”

EUROCRYPT2011, pp. 547-567, 2011.

[18] De Caro, Angelo, Vincenzo Iovino, and Giuseppe

Persiano. “Fully secure anonymous hibe and

secret-key anonymous ibe with short

ciphertexts,” Pairing-Based Cryptography-

Pairing 2010, pp. 347-366, 2010.

[19] Freeman, David Mandell. “Converting

pairing-based cryptosystems from composite-

order groups to prime-order groups,”

EUROCRYPT2010, pp. 44-61, 2010.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee575284e8e9ad88d2891cf76845370524d6253537030028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f0030028fd94e9b8bbe7f6e89816c425d4c51655b574f533002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c9069752865bc9ad854c18cea76845370524d521753703002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f300290194e9b8a2d5b9a89816c425d4c51655b57578b3002>
 /KOR <FEFFace0d488c9c8c7580020d504b9acd504b808c2a40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e0020c7740020c124c815c7440020c801c6a9d558b824ba740020ae00af340020d3ecd5680020ae30b2a5c7440020c0acc6a9d574c57c0020d569b2c8b2e4002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [545.000 394.000]
>> setpagedevice

