DOI QR코드

DOI QR Code

Sonocatalytic Degradation of Rhodamine B in the Presence of TiO2 Nanoparticles by Loading WO3

  • Meng, Ze-Da (Jiangsu Key Laboratory of Environmental Functional Materials, College of Chemistry and Bioengineering, Suzhou University of Science and Technology) ;
  • Sarkar, Sourav (Department of Advanced Materials Science & Engineering, Hanseo University) ;
  • Zhu, Lei (Department of Advanced Materials Science & Engineering, Hanseo University) ;
  • Ullah, Kefayat (Department of Advanced Materials Science & Engineering, Hanseo University) ;
  • Ye, Shu (Department of Advanced Materials Science & Engineering, Hanseo University) ;
  • Oh, Won-Chun (Department of Advanced Materials Science & Engineering, Hanseo University)
  • Received : 2013.09.12
  • Accepted : 2013.11.27
  • Published : 2014.01.27

Abstract

In the present work, $WO_3$ and $WO_3-TiO_2$ were prepared by the chemical deposition method. Structural variations, surface state and elemental compositions were investigated for preparation of $WO_3-TiO_2$ sonocatalyst. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) and transmission electron microscopy (TEM) were employed for characterization of these new photocatalysts. A rhodamine B (Rh.B) solution under ultrasonic irradiation was used to determine the catalytic activity. Excellent catalytic degradation of an Rh.B solution was observed using the $WO_3-TiO_2$ composites under ultrasonic irradiation. Sonocatalytic degradation is a novel technology of treating wastewater. During the ultrasonic treatment of aqueous solutions sonoluminescence, cavitaties and "hot spot" occurred, leading to the dissociation of water molecules. In case of a $WO_3$ coupled system, a semiconductor coupled with two components has a beneficial role in improving charge separation and enhancing $TiO_2$ response to ultrasonic radiations. In case of the addition of $WO_3$ as new matter, the excited electrons from the $WO_3$ particles are quickly transferred to $TiO_2$ particle, as the conduction band of $WO_3$ is 0.74 eV which is -0.5 eV more than that of $TiO_2$. This transfer of charge should enhance the oxidation of the adsorbed organic substrate. The result shows that the photocatalytic performance of $TiO_2$ nanoparticles was improved by loading $WO_3$.

Keywords

References

  1. X. Chen and S.S. Mao, Chem. Rev., 107(7), 2891 (2007). https://doi.org/10.1021/cr0500535
  2. C. Burda, Y. Lou, X. Chen, A. Samia and J. Stout, J. Gole, Nano Lett., 3(8), 1049 (2003). https://doi.org/10.1021/nl034332o
  3. O. K. Dalrymple, E. Stefanakos, M. A. Trotz and D. Y. Goswami, Appl. Catal. B: Environ., 98(1-2), 27 (2010). https://doi.org/10.1016/j.apcatb.2010.05.001
  4. K. K. Akurati, A. Vital, J. P. Dellemann, K. Mitchalow and T. Graule, Appl. Catal. B, 79, 53 (2008). https://doi.org/10.1016/j.apcatb.2007.09.036
  5. S. Somasundaram, N. Tacconi, C. R. Chenthamarakshan and K. Rajeshwar, J. Electroanal. Chem., 57(2), 167 (2005).
  6. Z. D. Meng, L. Zhu, J. G. Choi, C. Y. Park and W. C. Oh, Nanoscale. Res. Let., 6, 459 (2011). https://doi.org/10.1186/1556-276X-6-459
  7. J. Wang, W, Sun, Z. H. Zhang, Z. Q. Xing, R. Xu, R. H Li, Y. Li and X. D. Zhang, Ultrason. Sonochem., 15(4), 301 (2008). https://doi.org/10.1016/j.ultsonch.2007.07.001
  8. M. Kubo, K. Matsuoka, A. Takahashi, N. Shibasaki-Kitakawa and T. Yonemoto, Ultrason. Sonochem., 12(4), 263 (2005). https://doi.org/10.1016/j.ultsonch.2004.01.039
  9. D. Ke, H. Liu, T. Peng, X. Liu and K. Dai, Mater. Lett., 62, 447 (2008). https://doi.org/10.1016/j.matlet.2007.05.060
  10. X. W. Zhang, M. H. Zhou and L. C. Lei, Carbon, 43(8), 1700 (2005). https://doi.org/10.1016/j.carbon.2005.02.013
  11. S. F. Chen, L. Chen, S. Gao, and G. Y. Cao, Pow. Technol., 160, 198 (2005). https://doi.org/10.1016/j.powtec.2005.08.012
  12. L. M. Bertus, R. A. Carcel and A. Duta, Environ. Eng. Manage. J., 17(10), 1021 (2011).
  13. H. Liu, X. N. Dong, X. C. Wang, C. C. Sun, J. Q. Li and Z. F. Zhu, Chem. Eng. J., 230(1-3), 279 (2013) https://doi.org/10.1016/j.cej.2013.06.092
  14. P. Xu, T. Xu, J. Lu, S. M. Gao, N. S. Hosmane, B. B. Huang, Y. Dai and Y. B. Wang, Energy Environ. Sci.. 3(8), 1128 (2010). https://doi.org/10.1039/c001940m
  15. S. Bagwasi, B. Z. Tian, J. L. Zhang, M. Nasir, Chem. Eng. J., 217(5), 108 (2013). https://doi.org/10.1016/j.cej.2012.11.080
  16. P. Cheng, Z. Yang, H. Wang, W. Cheng, M. Chen, W. Shangguan, G. Ding, Inter.J. Hydr. Ener., 37(3), 2224 (2012). https://doi.org/10.1016/j.ijhydene.2011.11.004
  17. R. A. Carcel, L. Andronic, A. Duta, J. Nanosci. Nanotechnol., 11(10), 9095 (2011). https://doi.org/10.1166/jnn.2011.4283
  18. Y. Segura, R. Molina, F. Martinez and J. A. Melero, Ultrason. Sonochem., 16(3), 417 (2009). https://doi.org/10.1016/j.ultsonch.2008.10.004
  19. M. H. Entezari and Z. Sharif Al-Hoseini, Ultrason. Sonochem., 14(5), 599 (2007). https://doi.org/10.1016/j.ultsonch.2006.10.004
  20. J. Saien, H. Delavari and A. R. Solymani, J. Hazar. Mate., 177(1-3), 1031 (2010). https://doi.org/10.1016/j.jhazmat.2010.01.024
  21. N. Wang, L. H. Zhu, M. Q. Wang, D. L. Wang and H. Q. Tang, Ultrason. Sonochem., 17(1), 78 (2010). https://doi.org/10.1016/j.ultsonch.2009.06.014
  22. J. Wang, Z. Jiang, L.Q. Zhang, P. L. Kang, Y. P. Xie, Y. H. Lv, R. Xu and X. D. Zhang, Ultrason. Sonochem., 16(2), 225 (2009). https://doi.org/10.1016/j.ultsonch.2008.08.005
  23. Tryba B, Piszcz M, Morawski AW. Int. J. Photoenergy., 01, 15 (2009).
  24. B. L. Abrams, J. P. Wilcoxon, Crit. Rev. Solid. State. Mater. Sci., 30(3), 153 (2005). https://doi.org/10.1080/10408430500200981