DOI QR코드

DOI QR Code

Bioconversion Strategy in Conversion of Lignocellulosic Biomass upon Various Pretreatment Methods using Sulfuric Acid and Aqueous Ammonia

황산과 암모니아를 이용한 목질계 바이오매스의 전처리 공정에 따른 당화 및 발효공정 전략

  • Cayetano, Roent Dune (Department of Environmental Engineering, Kongju National University) ;
  • Kim, Tae Hyun (Department of Environmental Engineering, Kongju National University) ;
  • Um, Byung-Hwan (Department of Chemical Engineering and Research Center of Chemical Technology, Hankyong National University)
  • ;
  • 김태현 (국립공주대학교 환경공학과) ;
  • 엄병환 (한경대학교 화학공학과/화학기술연구소)
  • Received : 2013.08.27
  • Accepted : 2013.09.25
  • Published : 2014.02.01

Abstract

This is to study the effects of various pretreatment methods of agricultural residue, corn stover, and to compare the feature and pros and cons of each method including dilute sulfuric acid (DSA), soaking in aqueous ammonia (SAA), and ammonia recycle percolation (ARP). In order to convert corn stover to ethanol, various pretreatments followed by simultaneous saccharification and co-fermentation (SSCF) were tested and evaluated in terms of ethanol yield. With 3%, w/w of glucan loading using ARP-, DSA-, and SAA-treated solids, SSCFs using recombinant E. coli strain (ATCC$^{(R)}$ 55124) with commercial enzymes (15 FPU of Spezyme CP/g-glucan and 30 CBU/g-glucan enzyme loading) were tested. In the SSCF tests, 87, 90, and 78% of theoretical maximum ethanol yield were observed using ARP-, DSA-, and SAA-treated solids, respectively, which were 69, 58, and 74% on the basis of total carbohydrates (glucan + xylan) in the untreated corn stover. Ethanol yield of SAA-treated solid was higher than those of ARP- and DSA-treated solids. In addition, SSCF test using treated solids plus pretreated hydrolysate indicated that the DSA-treated hydrolysate showed the strongest inhibition effect on the KO11 strain, whereas the ARP-treated hydrolysate was found to have the second strongest inhibition effect. Bioconversion scheme using SAA pretreatment and SSCF can make the downstream process simple, which is suggested to produce ethanol economically because utilization of hemicellulose in the hydrolysate is not necessary.

본 연구는 농업 부산물인 옥수수대(corn stover)를 이용하여 묽은 황산법(DSA; dilute sulfuric acid)과 암모니아 침지법(SAA; soaking in aqueous ammonia) 그리고 암모니아 재순환 침출법(ARP; ammonia recycle percolation)을 비교하여 각 전처리법의 특징과 장단점을 분석하였고, 동시당화공동발효를 통한 에탄올 생산을 비교하였다. ARP, DSA, SAA를 이용하여 전처리된 고형물(3% 글루칸 투입)을 15 FPU/g-glucan, 30 CBU/g-glucan의 상업용 효소(Spezyme CP와 Novozyme 188;)와 E. coli KO11 균주(ATCC$^{(R)}$ 55124)를 이용하여 동시당화공동발효를 수행하였다. 전처리 후에 남은 고형물에 있는 당의 최대이론적 에탄올 수율은 각각 87, 90 그리고 78%였다. 이것은 전처리되지 않은 원래 옥수수대의 총 당량(글루칸 +자일란) 대비 각각 69, 58, 및 74%에 해당하는 것으로 SAA의 수율이 가장 높게 관찰되었다. 또한 전처리 당화액을 이용한 동시당화공동발효 실험결과는 DSA의 당화액이 발효균주에 대하여 가장 높은 독성을 나타내었고 ARP 전처리 당화액이 그 다음으로 저해효과가 큰 것으로 나타났다. 결국 SAA를 이용하여 전처리한 후 리그닌이 풍부한 당화액은 이용하지 않고 전처리된 고형물과 동시당화공동발효 공정을 이용한 에탄올 생산이 가장 간단하면서 경제적인 공정으로 제안되었다.

Keywords

References

  1. Kamm, B., Gruber, P. R. Kamm, M., Biorefineries - Industrial Processes and Products, Wiley-VCH Weinheim(2007).
  2. Mosier, N., Wyman, C. E., Dale, B. E., Elander, R, Lee, Y. Y. and Holtzapple, M., "Features of Promising Technologies for Pretreatment of Lignocellulosic Biomass," Bioresour. Technol., 96, 673-686(2005). https://doi.org/10.1016/j.biortech.2004.06.025
  3. Fernandez-Bolanos, J., Felizon, B., Heredia, A. and Jimenez, A., "Characterization of the Lignin Obtained by Alkaline Delignification and of the Cellulose Residue from Steam-exploded Olive Stones," Bioresour. Technol., 68, 121-132(1999). https://doi.org/10.1016/S0960-8524(98)00134-5
  4. Sawada, T., Nakamura, Y., Kobayashi, F., Kuwahara, M. and Watanabe, T., "Effects of Fungal Pretreatment and Steam Explosion Pretreatment on Enzymatic Saccharification of Plant Biomass," Biotechnol. Bioeng., 48, 719-724(1995). https://doi.org/10.1002/bit.260480621
  5. Schwald, W., Brownell, H. H. and Saddler, J. N., "Enzymatic Hydrolysis of Steam Treated Aspen Wood: Influence of Partial Hemicellulose and Lignin Removal Prior to Pretreatment," J. Wood Chem. Technol., 8(4), 543-560(1988). https://doi.org/10.1080/02773818808070700
  6. Kim, T. H. and Lee, Y. Y., "Pretreatment of Corn Stover by Soaking in Aqueous Ammonia," Appl. Biochem. Biotechnol., 121-124, 1119-1132(2005).
  7. Kim, T. H., Kim, J. S., Sunwoo, C. S. and Lee, Y. Y., "Pretreatment of Corn Stover by Aqueous Ammonia," Bioresour. Technol., 90, 39-47(2003). https://doi.org/10.1016/S0960-8524(03)00097-X
  8. Kim, T. H. and Lee, Y. Y., "Pretreatment and Fractionation of Corn Stover by Ammonia Recycle Percolation (ARP) Process," Bioresour. Technol., 96, 2007-2013(2005). https://doi.org/10.1016/j.biortech.2005.01.015
  9. Kim, T. H. and Lee, Y. Y., "Fractionation of Corn Stover by Hot Water and Aqueous Ammonia Treatment," Bioresour. Technol., 97(2), 224-232(2006). https://doi.org/10.1016/j.biortech.2005.02.040
  10. Iyer, P. V., Wu, Z., Kim, S. B. and Lee, Y. Y., "Ammonia Recycled percolation Process for Pretreatment of Herbaceous Biomass," Appl. Biochem. Biotechnol., 57-58, 121-132(1996). https://doi.org/10.1007/BF02941693
  11. Jacobsen, S. E. and Wyman, C. E., "Cellulose and Hemicellulose Hydrolysis Models for Application to Current and Novel Pretreatment Process," Appl. Biochem. Biotechnol., 84-86, 81-96(2000). https://doi.org/10.1385/ABAB:84-86:1-9:81
  12. Kim, J. S., Lee, Y. Y. and Torget, R. W., "Cellulose Hydrolysis Under Extremely Low Sulfuric Acid and High-temperature Conditions," Appl. Biochem. Biotechnol., 91-93, 331-340(2001). https://doi.org/10.1385/ABAB:91-93:1-9:331
  13. Allen, S. G., Schulman, D., Lichwa, J., Antal, M. J. Jr., Lynd, L. R., "A Comparison Between Hot Liquid Water and Steam Fractionation of Corn Fiber," Ind. Eng. Chem. Res., 40(13), 2934-2941(2001). https://doi.org/10.1021/ie990831h
  14. Park, Y. C., Kim, J. W. and Kim, J. S., "Pretreatment Characteristics of Ammonia Soaking Method for Cellulosic Biomass," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 49(3), 292-296(2011). https://doi.org/10.9713/kcer.2011.49.3.292
  15. Holtzapple, M. T., Lundeen, J. E., Sturgis, R., Lewis, J. E. and Dale, B. E., "Pretreatment of Lignocellulosic Municipal Solid Waste by Ammonia Fiber Explosion (AFEX)," Appl. Biochem. Biotechnol., 34-35(1), 5-21(1992). https://doi.org/10.1007/BF02920530
  16. Zhu, Y., Lee, Y. Y. and Elander, R. T., "Dilute-acid Pretreatment of Corn Stover Using a High-solids Percolation Reactor," Appl. Biochem. Biotechnol., 117, 103-114(2004). https://doi.org/10.1385/ABAB:117:2:103
  17. Wyman C., Handbook on Bioethanol: Production and Utilization, Taylor & Francis, Washington D.C.(1996).
  18. Shrestha, R. K., Hur, O. S. and Kim, T. H., "Pretreatment of Corn Stover for Improved Enzymatic Saccharification using Ammonia Circulation Reactor (ACR)," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 51(3), 335-341(2013). https://doi.org/10.9713/kcer.2013.51.3.335
  19. Hahn-Hagerdal, B., Jeppsson, H., Olsson, L. and Mohagegi, A., "An Interlaboratory Comparison of the Performance of Ethanol Producing Micro-organisms in a Xylose-rich Acid Hydrolysate," Appl. Biochem. Biotechnol., 41, 62-72(1994).
  20. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Tmpleton, D. and Crocker, D., "Determination of Structural Carbohydrates and Lignin in Biomass," National Renewable Energy Laboratory NREL/TP-510-42618 ed. Golden, CO(2010).
  21. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J. and Tmpleton, D., "Determination of Sugars, Byproducts, and Degradation Products in Liquid Fraction Process Samples," National Renewable Energy Laboratory NREL/TP-510-42623 ed. Golden, CO(2008).
  22. Selig, M., Weiss, N. and Ji, Y., "Enzymatic Saccharification of Lignocellulosic Biomass," National Renewable Energy Laboratory NREL/TP-510-42629 ed. Golden, CO(2008).
  23. Dowe, N. and McMillan, J., "SSF Experimental Protocols-ligno- Cellulosic Biomass Hydrolysis and Fermentation," National Renewable Energy Laboratory NREL/TP-510-42630 ed. Golden, CO (2008).
  24. Maciel de Mancilha, I. and Karim, M. N., "Evaluation of ion Exchange Resins for Removal of Inhibitory Compounds from Corn Stover Hydrolyzate for Xylitol Fermentation," Biotechnol. Prog., 19(6), 1837-1841(2003). https://doi.org/10.1021/bp034069x

Cited by

  1. Hydrothermal Pretreatment of Ulva pertusa Kjellman Using Microwave Irradiation for Enhanced Enzymatic Hydrolysis vol.53, pp.5, 2015, https://doi.org/10.9713/kcer.2015.53.5.570
  2. 열수전처리를 이용한 탈지미세조류로부터 발효당 생산 공정 개발 vol.54, pp.4, 2014, https://doi.org/10.9713/kcer.2016.54.4.443
  3. 효소당화를 위한 목질계 바이오매스의 유기용매 침출 전처리 공정 vol.54, pp.6, 2016, https://doi.org/10.9713/kcer.2016.54.6.806
  4. 커피박으로부터 생리활성물질 생산 증대를 위한 열수추출 공정 개발 vol.55, pp.3, 2017, https://doi.org/10.9713/kcer.2017.55.3.358
  5. 푸르푸랄의 화학적 촉매전환을 통한 테트라히드로푸르푸릴 알코올 생산 공정 개발 및 경제성 평가 vol.55, pp.5, 2014, https://doi.org/10.9713/kcer.2017.55.5.609