DOI QR코드

DOI QR Code

Numerical Studies on the Effects of the Channel-Inlet-Pressure Difference in the Pressure-Retarded Osmosis (PRO) Power System

압력지연삼투(PRO) 발전 시스템에서 채널 입구 압력차의 영향에 대한 수치해석적 연구

  • Hong, Sung Soo (Department of Chemical Engineering, Hong-Ik University) ;
  • Ryoo, Won (Department of Chemical Engineering, Hong-Ik University) ;
  • Chun, Myung-Suk (Complex Fluids Laboratory, National Agenda Res. Division, Korea Institute of Science and Technology (KIST)) ;
  • Chung, Gui Yung (Department of Chemical Engineering, Hong-Ik University)
  • 홍성수 (홍익대학교 화학공학과) ;
  • 류원선 (홍익대학교 화학공학과) ;
  • 전명석 (한국과학기술연구원 미세유체연구팀) ;
  • 정귀영 (홍익대학교 화학공학과)
  • Received : 2013.08.30
  • Accepted : 2013.10.15
  • Published : 2014.02.01

Abstract

In the spiral wound module of the pressure-retarded osmosis (PRO) system for the salinity gradient power generation, effects of the inlet pressure differences between feed-channel and draw-channel were studied. Fluxes of water and solute through membrane and power were estimated. The water flux through membrane decreased along the x-direction and increased along the y-direction with the increase of inlet pressure differences between two channels. On the other hand, the solute flux through membrane showed the opposite trend. The concentration of flow in the feed-channel increased a lot along the y-direction and that in the draw-channel decreased along the x-direction. In our system, for the inlet pressure differences of 1~11 atm, the flow rate in the feed-channel decreased about 8~13% and that in the draw-channel increased by the same amount. The power density increased and then decreased with the increasing inlet pressure difference.

해수-담수 염도 차 발전을 위한 압력지연삼투(pressure-retarded osmosis: PRO) 시스템의 나권형(spiral wound) 모듈에서 공급채널과 유도채널 사이의 입구 압력차의 영향이 수치적으로 연구되었다. 그리하여 막을 통한 물과 용질-플럭스들의 변화와 전력이 예측되었다. 막을 통한 물-플럭스의 크기는 두 채널 간 입구 압력차가 증가할수록 x축 방향으로 감소하고 y축 방향으로 증가하였다. 반면에 막을 통한 용질-플럭스의 크기는 반대의 경향을 보였다. 공급채널 내 유체의 농도는 y축 방향으로 크게 증가하였고, 유도채널 내 농도는 x축 방향으로 크게 감소하였다. 본 시스템에서 입구 압력차가 1~11 atm일 때 공급채널 내 유량은 8~13% 가량 감소하였고, 유도채널 내 유량은 그만큼 증가하였다. 전력밀도는 입구 압력 차가 증가할수록 증가하다가 감소하였다.

Keywords

References

  1. Kim, K. S., Ryoo, W., Chun, M.-S., Chung, G. Y. and Lee, S. O., "Transport Analysis in Reverse Electrodialysis with Pulsatile Flows for Enhanced Power Generation," Korean J. Chem. Eng., 29(2), 162-168(2012). https://doi.org/10.1007/s11814-011-0198-y
  2. Gerstandt, K., Peinemann, K. V., Skilhagen, S. E., Thorsen, T. and Holt, T., "Membrane Processes in Energy Supply for an Osmotic Power Plant," Desalination, 224, 64-70(2008). https://doi.org/10.1016/j.desal.2007.02.080
  3. Pattle, R. E., "Production of Electric Power by Mixing Fresh and Salt Water in the Hydroelectric Pile," Nature, 174, 660(1954). https://doi.org/10.1038/174660a0
  4. Loeb, S. and Norman, R. S., "Osmotic Power Plants," Science, 189, 654-655(1975). https://doi.org/10.1126/science.189.4203.654
  5. Kim, S. and Hoek, E. M. V., "Modeling Concentration Polarization in Reverse Osmosis Processes," Desalination, 186, 111-128 (2005). https://doi.org/10.1016/j.desal.2005.05.017
  6. Yip, N. Y., Tiraferri, A., Phillip, W. A., Schiffman, J. D., Hoover, L. A., Kim, Y. C. and Elimelech, M., "Thin-film Composite Pressure Retarded Osmosis Membranes for Sustainable Power Generation from Salinity Gradients," Environ. Sci. Technol., 45, 4360-4369(2011). https://doi.org/10.1021/es104325z
  7. Hwang, S. T., "Fundamentals of Membrane Transport," Korean J. Chem. Eng., 28, 1-15(2011). https://doi.org/10.1007/s11814-010-0493-z
  8. Sundaramoorthy, S., Srinivasan, G. and Murthy, D. V. R., "An Anlaytical Model for Spiral Wound Reverse Osmosis Membrane Modules : Part I-Model Development and Parameter Estimation," Desalination, 280, 403-411(2011). https://doi.org/10.1016/j.desal.2011.03.047
  9. Achilli, A., Cath, T. Y. and Childress, A. E., "Power Generation with Pressure Retarded Osmosis: An Experimental and Theoretical Investigation," J. Membr. Sci., 343, 42-52(2009). https://doi.org/10.1016/j.memsci.2009.07.006
  10. Sundaramoorthy, S., Srinivasan, G. and Murthy, D. V. R., "An Analytical Model for Spiral Wound Reverse Osmosis Membrane Modules : Part II-Experimental Validation," Desalination, 277, 257-264(2011). https://doi.org/10.1016/j.desal.2011.04.037
  11. Yip, N. Y. and Elimelech, M., "Thermodynamic and Energy Efficiency Analysis of Power Generation from Natural Salinity Gradients by Pressure Retarded Osmosis," Environ. Sci. Technol., 46, 5230-5239(2011).
  12. Hong, S. S., Ryoo, W., Chun, M.-S., Lee, S. O. and Chung, G. Y., "Numerical Studies on the Pressure-retarded Osmosis (PRO) System with the Spiral Wound Module for Power Generation," Desalination Water Treat (2013) online.
  13. Yip, N. Y. and Elimelech, M., "Performance Limiting Effects in Power Generation from Salinity Gradients by Pressure Retarded Osmosis," Environ. Sci. Technol., 45, 10273-10282(2011). https://doi.org/10.1021/es203197e
  14. Tiraferri, A., Yip, N. Y., Phillip, W. A., Schiffman, J. D. and Elimelech, M., "Relating Performance of Thin-film Composite Forward Osmosis Membranes to Support Layer Formation and Structure," J. Membr. Sci., 367, 340-352(2011). https://doi.org/10.1016/j.memsci.2010.11.014

Cited by

  1. Effects of membrane characteristics on performances of pressure retarded osmosis power system vol.32, pp.7, 2015, https://doi.org/10.1007/s11814-014-0354-2