DOI QR코드

DOI QR Code

A Method of Auto Photography Composition Suggestion

사진의 자동 구도 보정 제시 기법

  • Choi, Yong-Sub (Dept. of Computer and Communications Engineering, Kangwon National University) ;
  • Park, Dae-Hyun (Dept. of Computer and Communications Engineering, Kangwon National University) ;
  • Kim, Yoon (Dept. of Computer and Communications Engineering, Kangwon National University)
  • 최용섭 (강원대학교 컴퓨터정보통신공학과) ;
  • 박대현 (강원대학교 컴퓨터정보통신공학과) ;
  • 김윤 (강원대학교 컴퓨터정보통신공학과)
  • Received : 2013.09.27
  • Accepted : 2013.12.24
  • Published : 2014.01.29

Abstract

In this paper, we propose the auto correction technique of photography composition by which the eye line is concentrated and the stable image of the structure can be obtained in case the general user takes a picture. Because the general user photographs in most case without background knowledge about the composition of the photo, the subject location is not appropriate and the unstable composition is contrasted with the stable composition of pictures which the experts take. Therefore, we provide not the method processing the image after photographing, but he method presenting automatically the stable composition when the general users take a photograph. The proposed method analyze the subject through Saliency Map, Image Segmentation, Edge Detection, etc. and outputs the subject at the location where the stable composition can be comprised along with the guideline of the Rule of Thirds. The experimental result shows that the good composition was presented to the user automatically.

본 논문에서는 일반 사용자가 카메라로 사진을 촬영할 경우에 시선을 집중시키면서 안정적인 구도의 영상을 얻을 수 있는 자동 구도 제시기법을 제안한다. 일반 사용자는 대부분 사진의 구도에 대한 배경지식이 없이 사진을 촬영하고, 촬영된 사진은 피사체의 위치가 적절하지 않아 전문가들이 촬영한 안정적인 구도의 사진과 대조된다. 따라서 비전문가 사용자들에게 촬영 후 영상을 처리하는 방법이 아닌 촬영 시 안정적인 구도를 자동으로 제시해주는 방법을 제공한다. 제안하는 방법은 Saliency Map, Image Segmentation, 윤곽선 검출 등을 통해 피사체를 분석하고 피사체를 안정적인 구도가 구성될 수 있는 위치에 황금분할 가이드라인과 함께 출력한다. 실험결과를 통해 피사체를 분석하고 윤곽선을 검출하여 사용자에게 자동으로 구도가 제시되는 것을 알 수 있다.

Keywords

References

  1. Grill T., Scanlon M, "Photographic Composition," Watson-Guptill, 1990.
  2. Krages B, "Photography: The Art of Composition," Allworth Press, 2005.
  3. L. Liu, R. Chen, L. Wolf, and D. Cohen-Or, "Optimizing photo composition," Comput. Graph. Forum, Vol. 29, No. 2, pp. 469-478, 2010. https://doi.org/10.1111/j.1467-8659.2009.01616.x
  4. J. Chen, H. Zhao, Y. Han and X. Cao, "Visual saliency detection based on photographic composition," proceedings of ICIMCS, pp. 13-16, ACM New York, 2013.
  5. X. Bai and G. Sapiro, "A geodesic framework for fast interactive image and video segmentation and matting," ICCV 2007, pp.1-8, 2007.
  6. V. Vezhnevets and V. Konouchine, "Grow-Cut - Interactive Multi-Label N-D Image Segmentation," Proc. Graphicon. pp.150-156. 2005.
  7. C. Rother, V. Kolmogorov, and A. Blake, "GrabCut: Interactive foreground extraction using iterated graph cuts," ACM Trans. on Graphics, Vol.23, pp.309-314, 2004. https://doi.org/10.1145/1015706.1015720
  8. A. Delong and Y. Boycov, "A scalable graph-cut algorithm for n-d grids," In Proceedings of CVPR, pp.1-8, 2008
  9. C. Pantofaru and M. Hebert. "A Comparison of Image Segmentation Algorithms," Tech. Report CMU-RI-TR-05-40, Robotics Institute, Carnegie Mellon University, September, 2005.
  10. J. Wang and M. F. Cohen. "An iterative optimization approach for unified image segmentation and matting," In Proceedings of IEEE ICCV 2005, pp.936-943, 2005.
  11. S. Y. Kim, "Color image segmentation based on edge salience map and region merging," Journal of the Korea society of computer and information, Vol. 12, No. 3. pp.105-113, 2007.
  12. Y.-F. Ma and H.-J. Zhang. "Contrast-based image attention analysis by using fuzzy growing," In ACM International Conference on Multimedia, 2003.
  13. X. Hou and L. Zhang. "Saliency detection: A spectral residual approach," IEEE Conference on Computer Vision and Pattern Recognition, 2007.
  14. M.-M. Cheng, G.-X. Zhang, N. J. Mitra, X. Huang, and S.-M. Hu. "Global contrast based salient region detection," In CVPR, pp.409-416, 2011.
  15. J. Harel, C. Koch, and P. Perona. "Graph-based visual saliency," Advances in Neural Information Processing Systems 19, MIT Press, pp.545-552, 2007.
  16. I. Craw, D. Tock, and A. Bennett, "Finding face features," 2nd European Conf. Computer Vision pp.92-96, 1992.
  17. A. Lanitis, C. J. Taylor, and T. F. Cootes, "An automatic face identification system using flexible appearance models," Image and Vision Computing, Vol.13, No.5, pp.393-401, 1995. https://doi.org/10.1016/0262-8856(95)99726-H
  18. T. K. Leung, M. C. Burl, and P. Perona, "Finding faces in cluttered scenes using random labeled graph matching," Proc. 5th IEEE International Conference on Computer Vision, pp.637-644, 1995.
  19. V. Faber, "Clustering and the Continuous k-Means Algorithm", Los Alamos Science, No. 22, pp.138-144, 1994.
  20. M. Kass, A. Witkin, and D. Terzopoulos, "Snakes: Active Contour Models", International Journal of Computer Vision, pp.321.331, 1987.