DOI QR코드

DOI QR Code

Genetic Algorithm based Pathfinding System for Analyzing Networks

네트워크 분석을 위한 유전 알고리즘 기반 경로탐색 시스템

  • Kim, Jun-Woo (Dept. of Industrial and Management Systems Engineering, Dong-A University)
  • 김준우 (동아대학교 산업경영공학과)
  • Received : 2013.10.21
  • Accepted : 2013.12.06
  • Published : 2014.01.29

Abstract

This paper proposes GAPS, a practical genetic algorithm based pathfinding system for conveniently analyzing various networks. To this end, the GAPS is developed through integration of the intuitive graphic user interface for network modeling, the database management system for managing the data generated in modeling and exploring procedures, and a simple genetic algorithm for analyzing a wide range of networks. Especially, previous genetic algorithms are not appropriate for analyzing the networks with many dead-ends where there are few feasible paths between the given two nodes, however, GAPS is based on the genetic algorithm with the fitness function appropriate for evaluating both feasible and infeasible paths, which enables GAPS to analyze a wide range of networks while maintaining the diversity of the population. The experiment results reveal that GAPS can be used to analyze both networks with many dead-ends and networks with few dead-ends conveniently, and GAPS has several advantages over the previous genetic algorithms for pathfinding problems.

본 논문은 다양한 네트워크를 편리하게 분석할 수 있는 실용적인 유전 알고리즘 기반 경로탐색 시스템인 GAPS를 제안하고자 한다. 이러한 목적을 위해 GAPS는 네트워크 모델링을 위한 직관적인 그래픽 사용자 인터페이스와 모델링 및 탐색 과정에서 발생하는 데이터들을 관리하기 위한 데이터베이스 관리 시스템, 다양한 네트워크를 분석하기 위해 개발된 간단한 유전 알고리즘을 결합하여 개발되었다. 특히, 기존의 유전 알고리즘들이 단락이 많고 두 개 노드 간 실행가능 경로 수가 많지 않은 네트워크를 분석하는데 적합하지 않았던 반면, GAPS는 실행가능 경로와 실행불가능 경로를 모두 적절히 평가할 수 있는 적합도 함수를 사용하는 유전 알고리즘에 기반하고 있어 해 집단의 다양성을 유지하면서 다양한 네트워크들을 분석할 수 있다. 실험결과, GAPS를 통해 단락이 많은 네트워크와 단락이 적은 네트워크를 모두 편리하게 분석할 수 있다는 점과, GAPS가 기존의 경로탐색문제를 위한 유전 알고리즘들과 대비되는 장점을 갖고 있음을 확인할 수 있었다.

Keywords

References

  1. J.W. Kim, and M.J. Lee, "Applying Genetic Algorithm for Exploring the Effective Path in Network with Dead Ends," Journal of the Korea Knowledge Information Technology Society, Vol.8, No.1, pp.55-62, Feb. 2013.
  2. S.B. Pattnaik, S. Mohan, and V.M. Tom, "Urban Bus Transit Route Network Design using Genetic Algorithm," Journal of Transportation Engineering, Vol.124, No.4, pp.368-375, Jul. 1998. https://doi.org/10.1061/(ASCE)0733-947X(1998)124:4(368)
  3. I-S. Chang, "A Genetic Algorithm for Route Guidance System in Intermodal Transportation Networks with Time-Schedule Constraints," Journal of the Korean Institute of Industrial Engineers, Vol.27, No.2, pp.140-149, Jun. 2001.
  4. S. Li, M. Ding, C. Cai, and L. Jiang, "Efficient Path Planning Method based on Genetic Algorithm Combining Path Network," Proceedings of the 4th International Conference on Genetic and Evolutionary Computing, pp.194-197, Dec. 2010.
  5. L.S. White, "Shortest Route Models for the Allocation of Inspection Effort on a Production Line," Management Science, Vol.15, No.5, pp.249-259, Jan. 1969. https://doi.org/10.1287/mnsc.15.5.249
  6. L.S. Buriol, M.G.C. Resende, C.C. Ribeiro, and M. Thorup, "A Hybrid Genetic Algorithm for the Weight Setting Problem in OSPF/IS-IS Routing," Networks, Vol.46, No.1, pp.36-56, Jan. 2005 https://doi.org/10.1002/net.20070
  7. H. Chen, and B. Sun, "Multicast Routing Optimization Algorithm with Bandwidth and Delay Constraints based on GA," Journal of Communication and Computer, Vol.2, No.5, pp.63-67, May. 2005.
  8. C. Chitra, and Subbaraj, P., "A Nondominated Sorting Genetic Algorithm Solution for Shortest Path Routing Problem in Computer Networks," Expert System with Applications, Vol.39, No.1, pp.1518-1525, Jan. 2012. https://doi.org/10.1016/j.eswa.2011.08.044
  9. A.T. Ismail, A. Sheta, and M. Al-Weshah, "A Mobile Robot Path Planning using Genetic Algorithm in Static Environment," Journal of Computer Science, Vol.4, No.4, pp.341-344, Apr. 2008. https://doi.org/10.3844/jcssp.2008.341.344
  10. D. Dolgov, S. Thrun, M. Montemerlo, and J. Diebel, "Path Planning for Autonomous Vehicles in Unknown Semi-Structured Environments," The International Journal of Robotics Research, Vol.29, No.5, pp.485-501, Apr. 2010. https://doi.org/10.1177/0278364909359210
  11. M. Katsev, J. Yu, and S.M. LaValle, "Efficient Formation Path Planning on Large Graphs," Proceedings of the IEEE International Conference on Robotics and Automation, May. 2013.
  12. D. Kim, H. Kim, and K. Yi, "Design of Near-Minimum Time Path Planning Algorithm for Autonomous Driving," Transactions of the Korean Society of Mechanical Engineering A, Vol.37, No.5, pp.609-617, May. 2013. https://doi.org/10.3795/KSME-A.2013.37.5.609
  13. J.-Y. Kim, and S.-G. Kim, "Design and Implementation of Optimal Path Search Service using GPS Information in Photo File," Journal of the Korea Society of Computer and Information, Vol.17, No.12, pp.199-207, Dec. 2012. https://doi.org/10.9708/jksci/2012.17.12.199
  14. L. Fu, D. Sun, and L.R. Rilett, "Heuristic Shortest Path Algorithms for Transportation Applications: State of the Art," Computers and Operations Research, Vol.33, No.11, pp.3324-3343, Nov. 2006. https://doi.org/10.1016/j.cor.2005.03.027
  15. V.S. Gordon, and Z. Matley, "Evolving Sparse Direction Maps for Maze Pathfinding," Proceedings of Congress on Evolutionary Computation, pp.835-838, Jun. 2004.
  16. Y.V. Pehlivanoglu, "A New Vibrational Genetic Algorithm Enhanced with a Voronoi Diagram for Path Planning of Autonomous UAV," Aerospace Science and Technology, Vol.16, No.1, pp.47-55, Jan. 2012. https://doi.org/10.1016/j.ast.2011.02.006
  17. B. Coppin, "Artificial Intelligence Illuminated," Jones & Barlett Learning, 2004.
  18. J.H. Holland, Adaptation in Natural and Artificial Systems, University of Michigan Press, 1975.
  19. F. Altiparmak, M. Gen, L. Lin, and I. Karaoglan, "A Steady-state Genetic Algorithm for Multi-Product Supply Chain Network Design," Computers and Industrial Engineering, Vol.56, No.2, pp.521-537, Mar. 2009. https://doi.org/10.1016/j.cie.2007.05.012
  20. C.W. Ahn, and R.S. Ramakrishma, "A Genetic Algorithmfor Shortest Path Routing Problemand the Sizing of Populations," IEEE Transactions on Evolutionary Computation, Vol.6, No.6, pp.566-579, Dec. 2002. https://doi.org/10.1109/TEVC.2002.804323
  21. W. Wu, and Q. Ruan, "A Gene-Constrained Genetic Algorithm for Solving Shortest Path Problem," Proceedings of the 7th International Conference on Signal Processing, Vol.3, pp.2510-2513, Sep. 2004.
  22. C. Bierwirth, D.C. Mattfeld, and H. Kopfer, "On Permutation Representation for Sequencing Problems," Parallel Problem Solving from Nature IV, Springer Berlin Heidelberg, pp.310-318, 1996.
  23. S. Su and K. Tsuchiya, "Learning of a Maze using a Genetic Algorithm," Proceedings of the International Conference on Industrial Electronics, Control, and Instrumentation, pp.376-379, Nov. 1993.
  24. C. Carrick, and K. MacLeod, "An Evaluation of Genetic Algorithm Solution in Optimization and Machine Learning," Proceedings of the 1st Annual Conference Canadian Association for Information Sciences, pp.224-231, Jul. 1993.
  25. N. Baba, and H. Handa, "Genetic Algorithm Applied to Maze Passing Problem of Mobile Robots - A Comparison with the Learning Performance of the Hierarchical Structure Stochastic Automata," Proceedings of the 1994 IEEE International Conference on Neural Networks, pp.2690-2695, Jun. 1994.
  26. M. Gen, R. Cheng, and D. Wang, "Genetic Algorithms for Solving Shortest Path Problems," Proceedings of the IEEE International Conference on Evolutionary Computation, pp.401-406, Apr. 1997.
  27. M. Ericsson, M.G.C. Resende, and P.M. Pardalos, "A Genetic Algorithm for the Weight Setting Problem in OSPF Routing," Journal of Combinatorial Optimization, Vol.6, pp.299-333, Sep. 2002. https://doi.org/10.1023/A:1014852026591
  28. A.L. Corcoran, and R.L. Wainwright, "LibGA: A User-friendly Workbench for Order-based Genetic Algorithm Research," Proceedings of the 1993 ACM/SIGAPP Symposium on Applied Computing: States of the Art and Practice, pp.111-117, Mar. 1993.

Cited by

  1. 화물차 공유를 통한 물류효율화 방안에 관한 연구 vol.19, pp.10, 2014, https://doi.org/10.9708/jksci.2014.19.10.197