DOI QR코드

DOI QR Code

User Satisfaction Analysis on Similarity-based Inference Insect Search Method in u-Learning Insect Observation using Smart Phone

스마트폰을 이용한 유러닝 곤충관찰학습에 있어서 유사곤충 추론검색기법의 사용자 만족도 분석

  • 전응섭 (인덕대학교 컴퓨터소프트웨어과)
  • Received : 2013.12.24
  • Accepted : 2014.01.16
  • Published : 2014.01.29

Abstract

In this study, we proposed a new model with ISOIA (Insect Search by Observation based on Insect Appearance) method based on observation by insect appearance to improve user satisfaction, and compared it with the ISBC and ISOBC methods. In order to test these three insect search systems with AHP method, we derived three evaluation criteria for user satisfaction and three sub-evaluation criteria by evaluation criterion. In the ecological environment, non-experts need insect search systems to identify insect species and to get u-Learning contents related to the insects. To assist the public the non-experts, ISBC (Insect Search by Biological Classification) method based on biological classification to search insects and ISOBC (Insect Search by Observation based on Biological Classification) method based on the inference that identifies the observed insect through observation according to biological classification have been provided. In the test results, we found the order of priorities was ISOIA, ISOBC, and ISBC. It shows that the ISOIA system proposed in this study is superior in usage and quality compared with the previous insect search systems.

본 논문에서는 곤충 종의 외관구조인 머리, 몸통, 날개, 다리에 대한 관찰자의 일반적이고 수평적인 관찰특성에 따라 자유롭게 곤충 종을 관찰함으로써 관찰 곤충 검색엔진에서의 사용자 만족도 제고와 보다 효율적인 관찰학습의 방법을 제안한다. 자연생태 환경에서 초보 학습자의 효율적인 관찰검색과 효과적 학습을 위해서는 생물학적 분류체계가 아닌 곤충 종의 외관구조 즉, 외부 신체구조의 모양과 특성 중심의 곤충관찰 기반의 검색(Insect Search by Observation based on Insect Appearance: ISOIA)이 필요하다. 그러므로 본 연구에서는 곤충의 외관구조인 머리, 몸통, 날개, 다리에 대한 관찰자의 일반적인 관찰방법에 따른ISOIA 검색방식을 제안하고, 기존의 ISBC와 ISOBC 검색체계에 대한 사용 만족도를 비교 분석하여 본 논문에서 제안하는 ISOIA 검색 방안이 우수함을 보이고자 한다.

Keywords

Acknowledgement

Supported by : 인덕대학교

References

  1. C. S. Ko, E. S. Jun, S. K. Park, S. B. Kim, and S. T. Chung, "WEB-Mobile Service Systems for the Ecology of Insects and the Environment Information based on U-Learning," The Journal of Korea Information Processing Society, Vol. 4, No. 3, pp. 207-224, 2009.
  2. E. S. Jun, Y. S. Chang, Y. D. Kwon, C. S. Ko, and Y. N. Kim. "Smart phone-based Inference Framework for Identifying Insect Species in the Environment of U-Learning Observational Study", in Proceedings of the 2010 Autumn Conference, Korea Intelligent Information Systems Society pp.324-334, 2010.
  3. Korean Bioinformation Center,http://www. kobic.re.kr
  4. Korean Insects Society, http://insectkorea.kr
  5. Michigan State University, http://animaldiversity.ummz.umich.edu/site/acc ounts/information/insect.html
  6. The Mysteryof ButterFlies, http://nabisinbi.com
  7. National Academy of Agricultural Science, http://goodin.sect.naac.go.kr
  8. National Biological Species Knowledge Information Systems, http://www.nature.go.kr
  9. National Institute of Biological Resources, http://www.nibr.go.kr
  10. U-erems, http://smart.induk.ac.kr
  11. The Wonderful World of Insects, http://www.earthlife.net/insects
  12. Bric, http://bric.postech.ac.kr
  13. Digital Insect Collection of Seoul National University, http://insect.snu.ac.kr
  14. Ecological Information System, http://ecoinfo. seoul.go.kr
  15. Encyber, http://www.encyber.com
  16. Insect Collection, http://insect.naac.go.kr
  17. Green gyeonggi-do with Beautiful Forests, http://forest.gg.go.kr
  18. E. S. Jun, Y. S. Chang, Y. D. Kwon, and Y. N. Kim, "A Similarity-based Inference System for Identifying Insects in the Ubiquitous Environments", Journal of The Korea Society of Computer and Information, pp.175-187, 2011. https://doi.org/10.9708/jksci.2011.16.3.175
  19. S. Kaloudis, D. Anastopoulos, C. P. Yialouris, N. A. Lorentzos, and A. B. Sideridis, "Insect identification expert system for forest protection", Expert Systems with Applications vol. 28 pp445-452, 2005 https://doi.org/10.1016/j.eswa.2004.12.005
  20. H. W. Beck, P. Jones and J. W. Jones, "SOYBUG:An Expert System for Soybean Insect Pest Management", Agricultural Systems Vol. 30, pp 269-286, 1989 https://doi.org/10.1016/0308-521X(89)90091-7
  21. W. D. Batchelor, R. W. McClendon, D. B. Adams and J. W. Jones, "Evaluation of SMARTSOY: An Expert Simulation System for Insect Pest Management", Agricultural Systems Vol. 31, pp. 67 -81, 1989. https://doi.org/10.1016/0308-521X(89)90013-9
  22. G. M. Pasqual and J. Mansfield, "Development of a Prototype Expert System for Identification and Control of Insect Pests", Computers and Electronics in Agriculture, Vol. 2, pp. 263- 276, 1988. https://doi.org/10.1016/0168-1699(88)90002-6
  23. C. Wen, D. E. Guyer and W. Li, "Local features-based identification and classification for orchard insects", Biosystems Engineering, Vol.104, pp. 299-307, 2009. https://doi.org/10.1016/j.biosystemseng.2009.07.002
  24. F. Arrignon, M. Deconchat, J. P. Sarthou, G. Balent and C. Monteil, "Modelling the overwintering strategy of a beneficial insect in a heterogeneous landscape using a multi-agent system", Ecological Modelling, Vol. 205, pp. 423-436, 2007. https://doi.org/10.1016/j.ecolmodel.2007.03.006
  25. O. Isik, "E-learning satisfaction factors", 39th Annual Meeting of the Decision Sciences Institute, Proceedings of the 39th Annual Meeting of the Decision Sciences Institute, Nov. 22-25, 2008, Baltimore, Maryland
  26. http://www.decisionsciences.org/Proceedings/ DSI2008/index.html
  27. S. Petter, W. Delone and E. McLean, "Measuring information system success: models, dimensions, measures, and interrelationships", European Journal of Information Systems(2008), 17 pp236-263 https://doi.org/10.1057/ejis.2008.15
  28. T. L. Saaty, The Analytic Hierarchy Process, New York: McGraw Hill, 1980

Cited by

  1. 학습 효과 증진을 위한 안드로이드 기반의 개방형 U-러닝 시스템 설계 및 프로토타입 제작 : 2009년 개정 과학과 교육 과정 중심으로 vol.19, pp.10, 2014, https://doi.org/10.9708/jksci.2014.19.10.135