DOI QR코드

DOI QR Code

Device Design Guideline to Reduce the Threshold Voltage Variation with Fin Width in Junctionless MuGFETs

핀 폭에 따른 문턱전압 변화를 줄이기 위한 무접합 MuGFET 소자설계 가이드라인

  • Lee, Seung-Min (Department of Electronics Engineering, Incheon National University) ;
  • Park, Jong-Tae (Department of Electronics Engineering, Incheon National University)
  • Received : 2013.10.10
  • Accepted : 2013.11.13
  • Published : 2014.01.31

Abstract

In this paper, the device design guideline to reduce the threshold voltage variation with fin width in junctionless MuGFET has been suggested. It has been observed that the threshold voltage variation was increased with increase of fin width in junctionless MuGFETs. To reduce the threshold voltage variation with fin width in junctionless MuGFETs, 3-dimensional device simulation with different gate dielectric materials, silicon film thickness, and an optimized fin number has been performed. The simulation results showed that the threshold voltage variation can be reduced by the gate dielectric materials with a high dielectric constant such as $La_2O_3$ and the silicon film with ultra-thin thickness even though the fin width is increased. Particularly, the reduction of the threshold voltage variation and the subthreshold slope by reducing the fin width and increasing the fin numbers is known the optimized device design guideline in junctionless MuGFETs.

본 연구에서는 무접합 MuGFET의 핀 폭에 따른 문턱전압의 변화를 줄이기 위한 소자 설계 가이드라인을 제시하였다. 제작된 무접합 MuGFET으로부터 핀 폭이 증가할수록 문턱전압의 변화가 증가하는 것을 알 수 있었다. 무접합 MuGFET의 핀 폭에 따른 문턱전압의 변화를 줄이기 위한 소자 설계가이드라인으로 게이트 유전체, 실리콘박막의 두께, 핀 수를 최적화 하는 연구를 3차원 소자 시뮬레이션을 통해 수행하였다. 고 유전율을 갖는 $La_2O_3$ 유전체를 게이트 절연층으로 사용하거나 실리콘 박막을 최대한 얇게 하므로 핀 폭이 증가해도 문턱전압의 변화율을 줄일 수 있음을 알 수 있었다. 특히 유효 채널 폭을 같게 하면서 핀 수를 많게 하므로 문턱전압 변화율과 문턱전압 아래 기울기를 작게 하는 것이 무접합 MuGFET의 최적의 소자 설계 가이드라인임을 알 수 있었다.

Keywords

References

  1. J. P. Colinge, C. W. Lee, A. Afzalian, N. Kelleher, B. McCarthy, and R. Murphy, "Nanowire transistors without junction," Nature Nano-technology, vol. 5, no. 3, pp. 225-229, 2010. https://doi.org/10.1038/nnano.2010.15
  2. C.W. Lee, I. Ferrain, A. Afzalian, R. Yan, N.D. Akhavan, P. Razzavi, and J.P. Colinge, "Performance estimation of junctionless multigate transistors," Solid-State Electronics, vol.54, pp.97-103, 2010. https://doi.org/10.1016/j.sse.2009.12.003
  3. A. Gnudi, S. Reggiani, E. Gnani, and G. Baccarani, "Analysis of threshold voltage variation due to random dopant fluctuation in junctionless FETs," IEEE Electron Device Lett., vol. 33, no.3, pp.336-338, 2012. https://doi.org/10.1109/LED.2011.2181153
  4. R. D. Trevisoli, R. T. Doria, M. Souza, M.A. Pavanello, "A physically-based threshold voltage definition, extraction and analytical model for junctionless nanowire transistors," Solid-State Electonics, to be published in 2013.
  5. S. Choi, D. Moon, S. Kim, J.P. Duarte, and Y. Choi, "Sensitivity of threshold voltage to nanowire width variation in junctionless transistors," IEEE Electron Device Lett., vol. 32, no.2, pp.125-127, 2011. https://doi.org/10.1109/LED.2010.2093506
  6. J.P. Colinge, C.W. Lee, I Ferrain, N. Akhavan, R. Yan, P. Razavi, R. Yu, A. Nazarov, and R.T. Doriac, "Reduced electric field in junctionless transistors, " Applied Physics Letters, vol. 96, p.0773510, 2010.
  7. D.Y. Jeon, S. Park, M. Mouis, M. Berthome, S. Barrud, G.T Kim, and G. Ghibaudo, Revisited parameter extraction methodology for electrical characterization of junctionless transistors," Solid-State Electronics, to be published in 2013.
  8. G. Leung, and C. Chui, "Variability impact of random dopant fluctuation on nanoscle junctionless FinFETs," IEEE Electron Device Lett., vol. 33, no.6, pp.767-769, 2012. https://doi.org/10.1109/LED.2012.2191931
  9. A.N. Nazarov, V.S. Lysenko, I. Ferain, S. Das, R. Yu, A. Kranti, N. D. Akhavan, P. Razavi, and J.P. Colinge, "Floating body effects in junctionless MuGFETs," Proceeding of ULSI, 2012, pp.93-94.
  10. D. Moon, S. Choi, J.P. Durate, and Y. Choi, "Investigation of silicon nanowire gate-all-around junctioless transistors built on a bulk substrate," IEEE Trans. on Electron Device, vol. 60, no. 4, pp.1355-1360, 2013. https://doi.org/10.1109/TED.2013.2247763
  11. S Ohmi, C. Kobayashi, K Aizawa, S Yamamoto, E Tokomitsu, H Ishiwara. and H Iwai, "High quality ultrathin $La_2O_3$ for high-K gate insulator," Solid State Device Research Conference, 2001, pp.235-238.

Cited by

  1. 박막의 두께가 비정질 InGaZnO 무접합 트랜지스터의 소자 불안정성에 미치는 영향 vol.21, pp.9, 2014, https://doi.org/10.6109/jkiice.2017.21.9.1627