The $*$-Nagata Ring of almost Pr"{u}fer $*$-multiplication Domains

Jung Wook Lim
Department of Mathematics, Kyungpook National University, Daegu, 702-701, Republic of Korea
e-mail: jwlim@knu.ac.kr

Abstract. Let D be an integral domain with quotient field K, \mathcal{D} denote the integral closure of D in K and $*$ be a star-operation on D. In this paper, we study the $*$-Nagata ring of AP$*$MDs. More precisely, we show that D is an AP$*$MD and $D[X] \subseteq \mathcal{D}[X]$ is a root extension if and only if the $*$-Nagata ring $D[X]_{\times}$ is an AB-domain, if and only if $D[X]_{\times}$ is an AP-domain. We also prove that D is a P$*$MD if and only if D is an integrally closed AP$*$MD, if and only if D is a root closed AP$*$MD.

1. Introduction

For the sake of clarity, we first review some definitions and notation. Let D be an integral domain with quotient field K and $\mathcal{F}(D)$ be the set of nonzero fractional ideals of D. A star-operation on D is a mapping $I \mapsto I_{\ast}$ from $\mathcal{F}(D)$ into itself which satisfies the following three conditions for all $0 \neq a \in K$ and all $I, J \in \mathcal{F}(D)$:

1. $(aD)_{\ast} = aD$ and $(aI)_{\ast} = aI_{\ast}$;
2. $I \subseteq I_{\ast}$, and if $I \subseteq J$, then $I_{\ast} \subseteq J_{\ast}$; and
3. $(I_{\ast})_{\ast} = I_{\ast}$.

An $I \in \mathcal{F}(D)$ is said to be a $*$-ideal if $I = I_{\ast}$. A $*$-ideal of D is called a maximal $*$-ideal of D if it is maximal among proper integral $*$-ideals of D. Given any star-operation $*$ on D, we can construct a new star-operation $*_{f}$ as follows: For all $I \in \mathcal{F}(D)$, the $*_{f}$-operation is defined by $I_{\ast_{f}} = \bigcup\{J_{\ast} \mid J$ is a nonzero finitely generated fractional subideal of $I\}$. A star-operation $*$ on D is said to be of finite character (or finite type) if $I_{\ast} = I_{\ast_{f}}$ for each $I \in \mathcal{F}(D)$. It is easy to see that the $*_{f}$-operation is of finite character. Let $*'$ be a finite character star-operation on D. It is well known that if D is not a field, then each proper integral $*'$-ideal of D is

Received January 2, 2014; accepted April 9, 2014.
2010 Mathematics Subject Classification: 13A15, 13F05, 13G05.
Key words and phrases: $*$-Nagata ring, almost Pr"{u}fer $*$-multiplication domain, Pr"{u}fer $*$-multiplication domain.
contained in a maximal $*f$-ideal of D, and hence a maximal $*f$-ideal of D always exists. An $I \in \mathbf{F}(D)$ is said to be $*f$-invertible if $(IH^{-1})_{*f} = D$, or equivalently, $IH^{-1} \nsubseteq M$ for any maximal $*f$-ideal M of D. If $*_1$ and $*_2$ are star-operations on D, then we mean by $*_1 \leq *_2$ that $I_{*_1} \subseteq I_{*_2}$ for all $I \in \mathbf{F}(D)$. Clearly, if $*_1$ and $*_2$ are star-operations of finite character with $*_1 \leq *_2$, then a $*_1$-invertible ideal is $*_2$-invertible.

The simplest example of a star-operation is the d-operation. Other well-known examples are the v- and t-operations. The d-operation is just the identity map on $\mathbf{F}(D)$, i.e., $I_d = I$ for all $I \in \mathbf{F}(D)$. The v-operation is defined by $I_v = (I^{-1})^{-1}$, where $I^{-1} := \{a \in K \mid aI \subseteq D\}$, and the t-operation is defined by $I_t = \bigcup \{J_v \mid J$ is a nonzero finitely generated fractional subideal of $I\}$, i.e., $t = v_f$. Clearly, if an $I \in \mathbf{F}(D)$ is finitely generated, then $I_v = I_t$. It is also well known that $d \leq v \leq t$ for all star-operations \ast. For more on star-operations, the readers can refer to [8, Section 32].

Let $T(D)$ be the abelian group of t-invertible fractional t-ideals of an integral domain D under the t-multiplication $I \ast J = (IJ)_t$, and let $\text{Prin}(D)$ be the subgroup of $T(D)$ of principal fractional ideals of D. Then the t-class group of D is the quotient group $\text{Cl}_t(D) := T(D)/\text{Prin}(D)$. Let $\text{Inv}(D)$ be the group of invertible fractional ideals of D. Clearly, $\text{Inv}(D)$ is a subgroup of $T(D)$ containing $\text{Prin}(D)$. The Picard group is the group $\text{Pic}(D) := \text{Inv}(D)/\text{Prin}(D)$, and $\text{Pic}(D)$ is obviously a subgroup of $\text{Cl}_t(D)$.

Let D be an integral domain with quotient field K, and \overline{D} be the integral closure of D in K. In [1, Definition 4.1], Anderson and Zafrullah first introduced the notions of almost Prüfer domains and almost Bézout domains. They defined D to be an almost Prüfer domain (AP-domain) (respectively, almost Bézout domain (AB-domain)) if for any $0 \neq a, b \in D$, there exists a positive integer $n = n(a, b)$ such that (a^n, b^n) is invertible (respectively, principal). It was shown that D is an AP-domain with torsion (t)-class group if and only if D is an AB-domain [1, Lemma 4.4]; and D is an AP-domain (respectively, AB-domain) if and only if D is a Prüfer domain (respectively, Prüfer domain with torsion Picard group) and $D \subseteq \overline{D}$ is a root extension [1, Corollary 4.8]. In [1, Definition 5.1], the authors also defined D to be an almost valuation domain (AV-domain) if for any $0 \neq a, b \in D$, there exists an integer $n = n(a, b) \geq 1$ such that $a^n | b^n$ or $b^n | a^n$. Later, Li gave the notion of almost Prüfer v-multiplication domains which is the t-operation analogue of AP-domains. She defined D to be an almost Prüfer v-multiplication domain (APeMD) if for any $0 \neq a, b \in D$, there exists a positive integer $n = n(a, b)$ such that (a^n, b^n) is t-invertible. It was shown in [1, Theorem 5.8] (respectively, [14, Theorem 2.3]) that D is an AP-domain (respectively, APeMD) if and only if D_M is an AV-domain for all maximal ideals (respectively, maximal t-ideals) M of D. Following [13, Definition 2.1], D is an almost Prüfer $*f$-multiplication domain (AP+$*$MD) if for each $0 \neq a, b \in D$, there exists an integer $n = n(a, b) \geq 1$ such that (a^n, b^n) is $*f$-invertible, where $*f$ is a star-operation on D. It was shown in [13, Theorem 2.4] that D is an AP+$*$MD if and only if D_M is an AV-domain for all maximal $*f$-ideals M of D. Also, it is clear that if $*_1$ and $*_2$ are star-operations
with \(*_1 \leq *_2 \), then an AP\(*_1 \)MD is an AP\(*_2 \)MD; so for any star-operation \(*\), an AP-domain is an AP\(*\)MD, and an AP\(*\)MD is an AP\(\# \)MD.

In this paper, we study the \#-Nagata ring of AP\(*\)MDs, where \(*\) is a star-operation. More precisely, we show that \(D \) is an AP\(*\)MD and \(D[X] \subseteq \overline{D}[X] \) is a root extension if and only if the \#-Nagata ring \(D[X]_{N_v} \) is an AB-domain, if and only if \(D[X]_{N_v} \) is an AP-domain. We also prove that \(D \) is a P\(*\)MD if and only if \(D \) is an integrally closed AP\(*\)MD, if and only if \(D \) is a root closed AP\(*\)MD. (Preliminaries related to P\(*\)MDs will be reviewed before Lemma 5.) As a corollary, we recover a well-known fact that \(D \) is a P\(*\)MD if and only if \(D[X]_{N_v} \) is a Bézout domain, if and only if \(D[X]_{N_v} \) is a Prüfer domain.

2. Main Results

Throughout this section, \(D \) always denotes an integral domain with quotient field \(K \), \(\overline{D} \) is the integral closure of \(D \) in \(K \) and \(D[X] \) means the polynomial ring over \(D \). For a polynomial \(g \in D[X] \), \(c(g) \) stands for the content ideal of \(D \), i.e., the ideal of \(D \) generated by the coefficients of \(g \). Let \(*\) be a star-operation on \(D \) and set \(N_v := \{ g \in D[X] \mid c(g)_* = D \} \). If we need to make the integral domain \(D \) explicit, then we use \(N_v(D) \) instead of \(N_v \). Clearly, \(N_v = N_v \). Also, note that \(N_v = D[X] \setminus \bigcup M \), where \(M \) runs over all maximal \(*_f\)-ideals of \(D \) [11, Proposition 2.1(1)]: so \(N_v \) is a saturated multiplicative subset of \(D[X] \). We call the quotient ring \(D[X]_{N_v} \) the \#-Nagata ring of \(D \). Recently, the authors in [3] studied the \(t \)-Nagata ring of AP\(\# \)MDs. In fact, they showed that \(D \) is an AP\(\# \)MD and \(D[X] \subseteq \overline{D}[X] \) is a root extension if and only if \(D[X]_{N_v} \) is an AP-domain, if and only if \(D[X]_{N_v} \) is an AB-domain [3, Theorem 2.5]. (Recall that an extension \(R \subseteq T \) of integral domains is a root extension if for each \(z \in T \), \(z^n \in R \) for some integer \(n = n(z) \geq 1 \)).

In order to study the \#-Nagata ring of AP\(*\)MDs, we need the following lemma.

Lemma 1. The following assertions hold.

(1) If \(D \) is an AV-domain and \(F \) is a subfield of \(K \), then \(D \cap F \) is an AV-domain.

(2) Let \(*\) be a star-operation on \(D \). Then \(D \) is an AP\(*\)MD if and only if \(D_M \) is an AV-domain for all maximal \(*_f\)-ideals \(M \) of \(D \).

Proof. (1) Let \(0 \neq x \in F \). Then \(x = \frac{x}{a} \) for some \(0 \neq a, b \in D \). Since \(D \) is an AV-domain, we can find a suitable integer \(n = n(a, b) \geq 1 \) such that \(a^n \mid b^n \) or \(b^n \mid a^n \); so \(x^n \in D \) or \(x^{-n} \in D \). Hence \(x^n \in D \cap F \) or \(x^{-n} \in D \cap F \). Thus \(D \cap F \) is an AV-domain.

(2) This appears in [13, Theorem 2.4].

Recall that \(D \) is root closed if for \(a \in K \), \(a^n \in D \) for some positive integer \(n \) implies that \(a \in D \).
Lemma 2. Let S be a (not necessarily saturated) multiplicative subset of D. Then the following assertions hold.

1. If $D \subseteq \mathcal{D}$ is a root extension, then $D_S \subseteq \mathcal{D}_S$ is a root extension.

2. If D is root closed, then D_S is root closed.

Proof. (1) Let $\xi \in \mathcal{D}_S$, where $e \in \mathcal{D}$ and $s \in S$. Since $D \subseteq \mathcal{D}$ is a root extension, $e^n \in D$ for some integer $n = n(e) \geq 1$; so $(\xi^n) \in D_S$. Thus $D_S \subseteq \mathcal{D}_S$ is a root extension.

(2) Let $a \in K$ such that $a^n \in D_S$ for some integer $n \geq 1$. Then $sa^n \in D$ for some $s \in S$; so $(sa)^n \in D$. Since D is root closed, $sa \in D$, and hence $a \in D_S$. Thus D_S is root closed. \qed

Now, we give the main result in this article.

Theorem 3. Let $*$ be a star-operation on D and let $N_* := \{g \in D[X] \mid c(g)_* = D\}$. Then the following statements are equivalent.

1. D is an AP+MD and $D[X] \subseteq \mathcal{D}[X]$ is a root extension.

2. $D[X]_{N_*}$ is an AB-domain.

3. $D[X]_{N_*}$ is an AP-domain.

Proof. (1) \Rightarrow (2) Assume that D is an AP+MD, and let Q be a maximal ideal of $D[X]_{N_*}$. Then $Q = MD[X]_{N_*}$ for some maximal $*_f$-ideal M of D [11, Proposition 2.1(2)]. Note that D_M is an AV-domain by Lemma 1(2); so D_M is an APvMD and MD_M is a maximal t-ideal of D_M [1, Proof of Theorem 5.6]. Also, note that $D_M[X] = \mathcal{D}_M[X]$ (cf. [7, Theorem 12.10(2)]); so by Lemma 2(1), $D_M[X] \subseteq \mathcal{D}_M[X]$ is a root extension, because $D[X] \subseteq \mathcal{D}[X]$ is a root extension. Therefore $D_M[X]$ is an APvMD [14, Theorem 3.13]. Since $MD_M[X]$ is a maximal t-ideal of $D_M[X]$ [5, Lemma 2.1(4)], $D_M[X]_{MD_M[X]}$ is an AV-domain by Lemma 1(2). Note that $(D[X]_{N_*})_Q = (D[X]_{N_*})_{MD[X]_{N_*}} = D[X]_{MD[X]} = D_M[X]_{MD_M[X]}$ [2, Lemma 2]; so $(D[X]_{N_*})_Q$ is an AV-domain. Hence $D[X]_{N_*}$ is an AP-domain by Lemma 1(2). Note that $\text{Pic}(D[X]_{N_*}) = 0$ [11, Theorem 2.14]. Thus $D[X]_{N_*}$ is an AB-domain [1, Lemma 4.4].

(2) \Rightarrow (3) This implication is obvious.

(3) \Rightarrow (1) Let M be a maximal $*_f$-ideal of D. Then $MD[X]_{N_*}$ is a maximal ideal of $D[X]_{N_*}$ [11, Proposition 2.1(2)]. Since $D[X]_{N_*}$ is an AP-domain, $(D[X]_{N_*})_{MD[X]_{N_*}}$ is an AV-domain by Lemma 1(2). Note that $(D[X]_{N_*})_{MD[X]_{N_*}} = D[X]_{MD[X]} = D_M[X]_{MD_M[X]}$ [2, Lemma 2]; so $D_M[X]_{MD_M[X]}$ is an AV-domain. Since $D_M = D_M[X]_{MD_M[X]} \cap K$ [11, Proposition 2.8(1)], D_M is an AV-domain by Lemma 1(1). Thus Lemma 1(2), D is an AP+MD.

Let $N_v := \{f \in D[X] \mid c(f)_v = D\}$. Then $N_* \subseteq N_v$; so $D[X]_{N_v} = (D[X]_{N_*})_{N_v}$. Since $D[X]_{N_*}$ is an AP-domain, $D[X]_{N_*}$ is an APvMD; so $D[X]_{N_v}$ is also an APvMD [3, Lemma 2.4]. Thus $D[X] \subseteq \mathcal{D}[X]$ is a root extension [3, Theorem 2.5]. \qed
By applying \(* = d \) to Theorem 3, we obtain

Corollary 4. The following assertions are equivalent.

(1) \(D \) is an AP-domain and \(D[X] \subseteq \overline{D}[X] \) is a root extension.

(2) \(D[X]_{N_d} \) is an AB-domain.

(3) \(D[X]_{N_d} \) is an AP-domain.

Let \(* \) be a star-operation on \(D \). Recall that \(D \) is a Prüfer \(*\)-multiplication domain (P\(*\)MD) if every nonzero finitely generated ideal of \(D \) is \(*_f \)-invertible, or equivalently, \(D_M \) is a valuation domain for all maximal \(*_f \)-ideals \(M \) of \(D \) [10, Theorem 1.1]. When \(* = d \) or \(t \), it was shown in [1, Theorem 4.7] (respectively, [14, Theorem 2.4]) that \(D \) is a Prüfer domain (respectively, PrMD) if and only if \(D \) is an integrally closed AP-domain (respectively, APMD), if and only if \(D \) is a root closed AP-domain (respectively, AP\(d\)MD). We next extend these results to P\(*\)MDs for any star-operation \(* \).

Lemma 5. Let \(* \) be a star-operation on \(D \). Then the following assertions are equivalent.

(1) \(D \) is a P\(*\)MD.

(2) \(D \) is an integrally closed AP\(*\)MD.

(3) \(D \) is a root closed AP\(*\)MD.

Proof. (1) \(\Rightarrow \) (2) Clearly, a P\(*\)MD is an AP\(*\)MD. Thus this implication follows directly from a well-known fact that a P\(*\)MD is integrally closed [10, Theorem 1.1].

(2) \(\Rightarrow \) (3) It suffices to note that an integrally closed domain is always root closed.

(3) \(\Rightarrow \) (1) Assume that \(D \) is a root closed AP\(*\)MD, and let \(M \) be a maximal \(*_f \)-ideal of \(D \). Then \(D_M \) is an AV-domain by Lemma 1(2). Let \(a \) and \(b \) be nonzero elements of \(D_M \). Then there exists a positive integer \(n = n(a,b) \) such that \(a^n \mid b^n \) or \(b^n \mid a^n \). Hence \((\frac{a}{b})^n \in D_M \) or \((\frac{b}{a})^n \in D_M \). Note that \(D_M \) is root closed by Lemma 2(2); so \(\frac{a}{b} \in D_M \) or \(\frac{b}{a} \in D_M \), which indicates that \(D_M \) is a valuation domain. Thus \(D \) is a P\(*\)MD [10, Theorem 1.1].

Recall that \(D \) is a Bézout domain if every finitely generated ideal of \(D \) is principal. It is well known that \(D \) is a Bézout domain if and only if \(D \) is a Prüfer domain with trivial Picard group.

Corollary 6. ([6, Theorem 3.1]) Let \(* \) be a star-operation on \(D \). Then the following statements are equivalent.

(1) \(D \) is a P\(*\)MD.

(2) \(D[X]_{N_*} \) is a Bézout domain.
(3) $D[X]_{N_*}$ is a Prüfer domain.

Proof. Note that by suitable combinations of [12, Theorems 51 and 52], [7, Corollary 12.11(2)] and [11, Proposition 2.8(1)], it is easy to see that D is integrally closed if and only if $D[X]_{N_*}$ is integrally closed.

$(1) \Rightarrow (2)$ If D is a P*MD, then by Lemma 5, D is an integrally closed AP*MD; so $D[X]_{N_*}$ is an integrally closed AP-domain by Theorem 3. Hence $D[X]_{N_*}$ is a Prüfer domain [1, Theorem 4.7] (or Lemma 5). Note that Pic($D[X]_{N_*}$) = 0 [11, Theorem 2.14]. Thus $D[X]_{N_*}$ is an integrally closed AP-domain by Theorem 3. Hence $D[X]_{N_*}$ is a Prüfer domain [1, Theorem 4.7] (or Lemma 5). Note that Pic($D[X]_{N_*}$) = 0 [11, Theorem 2.14]. Thus $D[X]_{N_*}$ is an integrally closed AP-domain by Theorem 3. Hence $D[X]_{N_*}$ is an integrally closed AP*MD by Theorem 3. Thus the result follows from Lemma 5. □

A particular case of Corollary 6 is when $*=d$ or t.

Corollary 7. ([2, Theorem 4] (respectively, [11, Theorem 3.7])) The following assertions are equivalent.

(1) D is a Prüfer domain (respectively, Pr*MD).

(2) $D[X]_{N_d}$ (respectively, $D[X]_{N_v}$) is a Bézout domain.

(3) $D[X]_{N_d}$ (respectively, $D[X]_{N_v}$) is a Prüfer domain.

Let $*$ be a star-operation on D. Note that the $*$-Nagata ring $D[X]_{N_*}$ is a quotient ring of the polynomial ring $D[X]$. We end this article by mentioning a remark for the polynomial extensions of AP*MDs.

Remark 8. (1) Let $*$ be a star-operation on $D[X]$. Then the mapping $\tau : F(D) \to F(D)$ defined by $I* = (I D[X])_* \cap D$ for all $I \in F(D)$ is a star-operation on D [15, Proposition 2.1]. It is well known that if $*$ denotes the d-operation (respectively, t-operation, v-operation) on $D[X]$, then τ is the d-operation (respectively, t-operation, v-operation) on D [15, Remark 2.2] (or [9, Proposition 4.3]).

(2) If D is an APvMD and $D[X] \subseteq \overline{D}[X]$ is a root extension, then $D[X]$ is also an APvMD [14, Theorem 3.13]. (Note that the condition “$D[X] \subseteq \overline{D}[X]$ is a root extension” is essential [14, Remark 3.12(3)].)

(3) Let $*$ and τ be star-operations as in (1). By (2), it might be natural to ask whether APvMD properties of the base ring can be ascended to AP*MD properties of the polynomial extension (under some assumptions if needed), i.e., if D is an APvMD with some additional conditions, then $D[X]$ is an AP*MD. However the answer is not generally affirmative. For example, the polynomial ring over an AP-domain is not generally an AP-domain. In fact, $D[X]$ is an AP-domain if and only if D is a field (cf. [4, Theorem 2.15]).

Acknowledgments. The author would like to thank the referee for his/her several valuable suggestions.
References

