
Asian Pacific Journal of Cancer Prevention, Vol 15, 2014 9731

DOI:http://dx.doi.org/10.7314/APJCP.2014.15.22.9731
Modeling Age-specific Cancer Incidences Using Logistic Growth Equations: Implications for Data Collection

Asian Pac J Cancer Prev, 15 (22), 9731-9737

Introduction

Cancers have long been a major cause of human death 
and diseases-adjusted life year loss (Ma et al., 2006). In 
2002, new cancer cases and deaths accounted for 10.86 and 
6.73 million respectively worldwide (Parkin et al., 2000). 
In 2005, over 7.6 million people died to cancer accounting 
for 13% of total death (Parkin et al., 2005). Predicted 
cases and deaths will rise to 15 and 10 million by 2020 
(Parkin et al., 2001). WHO data showed that malignant 
tumors worldwide took up 5% of total burden caused by 
all diseases in 2005 (World Health Organization, 2006). 
More recent investigations revealed that cancers were the 
first death cause in cities and higher than cerebrovascular 
diseases and cardiopathy (China Ministry of Health, 2008). 
Estimated direct and indirect economic loss due to the 
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Abstract

 Large scale secular registry or surveillance systems have been accumulating vast data that allow mathematical 
modeling of cancer incidence and mortality rates. Most contemporary models in this regard use time series and 
APC (age-period-cohort) methods and focus primarily on predicting or analyzing cancer epidemiology with 
little attention being paid to implications for designing cancer registry, surveillance or evaluation initiatives. 
This research models age-specific cancer incidence rates using logistic growth equations and explores their 
performance under different scenarios of data completeness in the hope of deriving clues for reshaping relevant 
data collection. The study used China Cancer Registry Report 2012 as the data source. It employed 3-parameter 
logistic growth equations and modeled the age-specific incidence rates of all and the top 10 cancers presented in 
the registry report. The study performed 3 types of modeling, namely full age-span by fitting, multiple 5-year-
segment fitting and single-segment fitting. Measurement of model performance adopted adjusted goodness of fit 
that combines sum of squred residuals and relative errors. Both model simulation and performance evalation 
utilized self-developed algorithms programed using C# languade and MS Visual Studio 2008. For models built 
upon full age-span data, predicted age-specific cancer incidence rates fitted very well with observed values for 
most (except cervical and breast) cancers with estimated goodness of fit (Rs) being over 0.96. When a given 
cancer is concerned, the R valuae of the logistic growth model derived using observed data from urban residents 
was greater than or at least equal to that of the same model built on data from rural people. For models based 
on multiple-5-year-segment data, the Rs remained fairly high (over 0.89) until 3-fourths of the data segments 
were excluded. For models using a fixed length single-segment of observed data, the older the age covered by the 
corresponding data segment, the higher the resulting Rs. Logistic growth models describe age-specific incidence 
rates perfectly for most cancers and may be used to inform data collection for purposes of monitoring and 
analyzing cancer epidemic. Helped by appropriate logistic growth equations, the work vomume of contemporary 
data collection, e.g., cancer registry and surveilance systems, may be reduced substantially. 
Keywords: Cancer - incidence - models - logistic growth equations - data collection - China cancer registry

RESEARCH ARTICLE

Modeling Age-specific Cancer Incidences Using Logistic 
Growth Equations: Implications for Data Collection
Xing-Rong Shen1*, Rui Feng2, Jing Chai1, Jing Cheng1, De-Bin Wang1,3

disease was 11.323 and 6.000 billion USD respectively 
representing 4.67% of total medical cost (Wei, 2009). 

Escalating cancer threats and harms have attracted 
tremendous efforts exploring the epidemiology of the 
diseases via large scale secular registry or surveillance 
systems (Goss et al., 2014; Ullrich et al., 2014). These 
efforts have been accumulating vast data that allow for 
establishment of mathematic models simulating cancer 
incidence and mortality rates for different age groups, 
time periods or cohorts. Leung and colleagues proposed 
a model for analyzing cervical cancer incidence using 
maximum likelihood and Bayesian methods and data 
from the Hong Kong Cancer Registry (Leung et al., 2006). 
Tyson and coworkers established a model incorporating 
the effects of age, year of diagnosis, and year of birth on 
incidence trends of renal cell carcinoma using data from 
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United States National Cancer Institute’s Surveillance, 
Epidemiology, and End Results public-use registry (Tyson 
et al., 2013). The most commonly adopted approaches for 
modeling cancer rates are time series and APC models 
(Meira et al., 2013; Ocana-Riola et al., 2013; Wang et 
al., 2014). Usually, time series models assume a Poisson 
distribution of cancer counts and include autoregressive 
error terms and/or time trends (Wingo et al., 1998; Knorr-
Held et al., 2001); while APC models generally consists 
of three components, i.e., age (A), period (P), and cohort 
(C) (Jurgens et al., 2014). Of all the variables studied 
so far, age seems to have the highest effect on cancer 
mortality and incidence rates (Dyzmann-Sroka et al., 
2014). So the performance of models depends heavily 
on how the influence of age on cancers is incorporated. 
With contemporary models, methods used simulating the 
relationship between age and cancer rates include mainly 
linear (Lee et al., 2011), polynomial (Wingo et al., 1998), 
piecewise linear (Kim et al., 2000), spline, log linear (Du 
et al., 2014) or power curves (Moller, 2004). Typical 
S-shaped line graphs of age-specific cancer incidence 
and mortality rates are clearly observable with almost all 
cancers worldwide (Bouchbika et al., 2013; Al-Hashimi et 
al., 2014; Wei et al., 2014). If S-line represents true general 
pattern, most methods (including linear, log linear, power 
curves)  used in previous models may not fitt well at least 
for some age ranges (e.g., under 35 or over 75 years). Some 
of the curves (e.g., piecewise linear and spline curves) 
may adequately approach any S-line.  Yet this requires 
much more detailed data about observed age-specific 
cancer counts.  Besides, most previous work in this regard 
focuses mainly on predicting or analyzing cancer epidemic 
with little attention being paid to informing relevant data 
collection. 

This paper models age-specific cancer incidence 
rates using logistic growth equations. Although there 
are evidences that such equations describe well cancer 
cell proliferation under various conditions (Fory’s et al., 
2003), publications linking them with age-specific cancer 
rates are limited. In particular, the paper explores the 
performance of logistic growth models under different 
scenarios of data completeness. This may reveal clues 
for reshaping contemporary data collection, e.g., cancer 
registry, surveillance or evaluation initiatives. Given 
the huge amount of scarce resources invested annually 
on these initiatives (Hutchison et al., 1997), they merit 
continuous scrutinize and refinement.

Materials and Methods

Data source
All source data used in this study came from China 

Cancer Registry Report 2012, the latest available annual 
report of the kind by far (He et al., 2012). It draws from 
data collected in 2009 by 72 sites throughout China 
covering 85.47 million urban and rural Chinese residents 
and provides incidence and mortality rates of all and over 
20 specific cancers by age, gender and registry sties. A 
sample datasets was given in our previous paper (Chen 
et al., 2014) and detailed charateristics of the data will be 
described seperately.

Formulae used
Based on empirical observations of patterns with the 

reported cancer incidence rates along different ages for all 
and specific cancers, the study adopted a three parameter 
logistic growth equation (Formula 1). In this formula, t   
stands for age; and pt, cancer incidence rate for a given 
age t; pmax, the highest cancer incidence rate for all ages; k, 
growth rate; while b serves as a baseline growth rate that 
determines the location of “the rapidly growing phase” of 
a S-curve along the age spectrum. In addition, the study 
used Formula 2 in identifying the most optimal model 
from a set of potential models for a given type of cancer 
and in evaluating the performance of the models selected. 
In Formula 2, R represents goodness of fit of the model 
under concern; while pot and pst stand for observed and 
simulated (or predicted) cancer incidence rate for a given 
age t resperctively. 

(1)

(2)
Selection of input data

In terms of how input data were selected, the study 
performed 3 types of modeling, namely full age-span 
fitting, multiple 5-year-segment fitting and single-segment 
fitting. Full age-span fitting utilized the registered cancer 
incidence data covering all the ages (i.e., from age 0 
through to age 85); while the other two types of fitting, 
only part of the data. The multiple 5-year-segment fitting 
divided the whole age-span into segments consisting of 
5 consecutive ages (e.g., ages 0-4, ages 5-9 etc.) first 
and then enter the corresponding observed age-specific 
cancer incidence rates for every other (e.g., ages 0-4, 
ages 10-14, …, ages 70-74, ages 80-84), every other 2, 
every other 3, every other 4 and every other 5 segments 
into modeling respectively. With regard to single-segment 
fitting, it selected only one segment of ages and entered 
corresponding incidence rates into modeling. These 
segments covered 15, 30, 45, 60 and 75 consecutive ages 
respectively. Considering that location along the age-span 
covered by a same length of data segment may result 
in different model parameters, the study set beginning, 
middle and end as 3 crieteria for selecting single segment 
data. For example, for the segment consisting of 15 ages, 
the study established 3 different logistic growth equations 
based on registered cancer incidence rates for ages 0-14 
(beginning segment),  ages  38-52 (middle segment) and 
ages 70-84 (end segment) respectively.

Algorithms for model building
Given that available statistical software does not allow 

for logistic growth modeling using segmental input data. 
The study employed a self-developed mini-program to 
perform all the computation. Written in C# language, the 
program runs on a webpage built with Microsoft Visual 
Studio 2008. For each model building, the webpage 
accepts an intended age set (e.g., {61; 62; 63; 64; 65}) 
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and a corresponding set of observed cancer incidence rates 
(e.g., {351; 362;373;384; 395}, in 1/100000) as input and 
then produces a best-fit parameter set (e.g., {pmax=200, 
b=10.5, k=0.17}) and a goodness of fit (e.g., R=0.98). 
This computation proceeds in 5 steps. Step 1 assumes a 
proper value range for each of the 3 parameters included 
in Formula 1 (i.e., 0≤pmax≤5000, 0≤b≤ 20, 0≤k≤0.8). Step 
2 sets a small enough incremental value for each of the 
3 parameters, i.e., 1 for pmax, 0.1 for b and 0.01 for k, 
respectively and divides the ranges of pmax, b and k into 
3 serial parameter sets, i.e., {0, 1, 2, …, 1×i, …, 4999, 
5000}, {0, 0.1, 0.2, 0.3, …, 0.1×j, …, 19.8, 19.9, 20.0} 
and {0, 0.01, 0.02, …, 0.01×n, …, 0.78, 0.79, 0.80}; here 
i=1, 2, 3, …, 5000 (i.e., 5000/1), j=1, 2, 3, …, 200 (i.e., 
20/0.1) and n=1, 2, 3, …, 80 (i.e., 0.8/0.01). Step 3 selects 
one element from each of the 3 serial parameter sets and 
generates a complete set (5000×200×80 elements in 
total) of potential parameter combinations, i.e., {{pmax=1, 
b=0, k=0}, {pmax=0, b=0, k=0.01}, …, {pmax=5000, 
b=20, k=0.79}, {pmax=5000, b=20, k=0.80}}. Step 4 uses 
Formula 2 and compares the goodness of fit between the 
registered cancer incidence set entered via the webpage 
and that predicted by Formula 1 using each of the potential 
parameter combinations. Step 5 outputs the parameter 
combination that has the largest R.

Results 

Full age-span fitting models
As shown in Table1 and Figure 1, the majority 

of curves representing observed age-specific cancer 
incidence rates fit very well with predictions by logistic 
growth models with estimated goodness of fit (R) being 
over 0.96. Yet the R values for some types of cancer, 
e.g., cervical cancer and breast cancer, were quite low, 
ranged from 0.25 to 0.92. The 3 parameters defining the 
logistic growth models showed substantial variations.  
Pmax ranged from 8 to 2248; b, from 5.50 to 14.80; and k, 
from 0.08 to 0.44.

Multiple-5-year-segment fitting models
Table 2 and Figure 2 displays findings from multiple-

5-year-segment modeling. Goodness of fit (R) decreased 
as the number of data segments being left out increased. 
Yet, it remained fairly high even when only one fourth of 
segments of observed data were entered into modeling. 
And this phenomenon applied to all types of cancers. The 
differences between the R values of models for different 
cancer types (excluding cervical and breast cancer) built 
upon “every other segment” of observed data (Table 2, 
column 5) and that built upon “every other 4 segments” of 
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Table 1. Parameters and Goodness of Fit of Logistic Growth Models Based on Full-age-span Cancer Incidence Data
Type of cancer Total Males Females Urban Rural
 Pmax b k R Pmax b k R Pmax b k R Pmax b k R Pmax b k R

Lung  cancer 532 8.7 0.12 0.97 779 8.8 0.12 0.97 339 8.7 0.12 0.96 593 8.8 0.12 0.97 366 8.9 0.13 0.95
Esophagus cancer 129 10.6 0.17 0.98 200 8.3 0.13 0.93 97 9.9 0.15 0.96 86 9 0.14 0.96 261 9.5 0.15 0.95
Gastric cancer 245 8.6 0.13 0.97 338 9.1 0.14 0.97 195 7.3 0.1 0.97 244 7.8 0.11 0.96 309 9.39 0.15 0.96
Liver cancer 151 5.8 0.09 0.94 194 5.5 0.09 0.93 128 7.3 0.1 0.98 167 5.6 0.08 0.94 152 5.9 0.1 0.94
Colorectal cancer 272 8 0.11 0.96 333 8.1 0.11 0.96 244 7.4 0.1 0.96 336 8.1 0.11 0.96 125 7.5 0.11 0.96
Bladder cancer 91 9.3 0.12 0.96 160 9.5 0.12 0.97 49 9.5 0.12 0.94 107 9.3 0.12 0.96 56 8.7 0.11 0.96
Cervical cancer 10 13.5 0.39 0.73 NA NA NA NA 20 9.9 0.29 0.7 10 14.8 0.44 0.67 11 14.6 0.39 0.77
Breast cancer 44 11.6 0.28 0.9 3 5.9 0.08 0.86 85 9.8 0.24 0.87 53 9.9 0.24 0.92 23 9.7 0.25 0.79
Pancreatic cancer 95 8.5 0.11 0.98 112 8.5 0.11 0.96 74 9.1 0.12 0.98 108 8.6 0.11 0.98 54 9.2 0.13 0.96
Nasopharyngeal cancer 8 6.8 0.16 0.92 12 6.9 0.16 0.92 4 6.7 0.17 0.92 9 6.7 0.16 0.89 6 6.6 0.15 0.88
All cancers 2064 7 0.1 0.96 2710 7.8 0.11 0.97 1459 6.1 0.09 0.94 2424 6.6 0.09 0.96 1578 7.1 0.11 0.96

*Note: Source data came from age-specific incidence rates of top ten and all cancers from China cancer registry report 2012; Pmax , b and k represents the parameters in 
the logistic equation, yt=Pmax /(1+eb-kt), where t stands for age and yt, incidence rate for age t; R stands for goodness of fit between predicted and observed age-specific 
cancer incidence rates; NA stands for not applicable

Figure 2. Predicted vs Registered  Age-specific Cancer 
Incidence Rates Using Difference Segment of Input 
Data. Blue lines represent actual incidence rates; and red, green, 
purple, light blue, brown lines represent predicted incidence rates 
using every other 1, 2, 3, 4, 5 segment of input data respectively, 
Y-Axis represents cancer incidence rate in 1/100000 and X-Axis, 
age; Data source came from China cancer registry report 2012

Figure 1. Predicted vs Registered Age-specific Cancer 
Incidence Rates. Red lines represent predicted incidence rates 
and blue lines, actual incidence rates; Y-Axis represents cancer 
incidence rate in 1/100000 and X-Axis, age; Data source came 
from China cancer registry report 2012
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observed data (Table 2, column 17) ranged from only 0 to 
0.05. However, starting from the column of “every 5 other 
segments”, the R values reduced dramatically. Similarly, 
although all the 3 parameters of the simulated logistic 
growth equations varied as the number of segments of data 
entered for modeling changed, most of these variations 
remained to a minimum extent (less than 10%) until the 
column of “every other 4 segments” and did not show 
clear decreasing or increasing trend.
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Table 3. Parameters and goodness of fit of Logistic Growth Models Based on Single-segment Cancer Incidence Data
Type of cancer 15 ages 30 ages 45 ages 60 ages 75 ages
 Pmax b k R Pmax b k R Pmax b k R Pmax b k R Pmax b k R

All cancers                    
-Beginning 20 0.1 0.01 0.71 278 3.7 0.04 0.72 561 6.7 0.13 0.91 965 7.4 0.13 0.97 2099 6.4 0.09 0.96
-Middle 476 7.3 0.15 0.98 966 7.4 0.13 0.98 971 7.4 0.13 0.98 1384 6.9 0.11 0.96 2067 7 0.1 0.96
-End 2026 7.7 0.11 0.98 1985 6.9 0.1 0.96 1988 6.9 0.1 0.96 2064 7 0.1 0.96 2064 7 0.1 0.96
Lung cancer                    
-Beginning 1 2.9 0.01 0.55 7 7.1 0.18 0.9 49 10.5 0.22 0.97 185 10 0.17 0.98 530 8.7 0.12 0.97
-Middle 70 9.7 0.19 0.96 184 10 0.17 0.98 216 9.7 0.16 0.99 397 8.9 0.13 0.96 565 8.8 0.12 0.97
-End 433 14 0.2 0.99 532 8.7 0.12 0.97 488 9.2 0.13 0.97 488 9.2 0.13 0.96 532 8.7 0.12 0.97
Esophagus cancers                    
-Beginning 1 2.9 0.01 0.24 1 3.1 0.01 0.26 34 13 0.25 0.94 77 12.5 0.22 0.98 127 9.9 0.16 0.97
-Middle 51 13 0.24 0.96 71 12.9 0.23 0.98 115 11.5 0.19 0.97 120 11 0.18 0.98 128 9.9 0.16 0.97
-End 133 9.4 0.15 0.99 133 9.4 0.15 0.98 131 10 0.16 0.98 129 10.6 0.17 0.98 129 9.9 0.16 0.97
Gastric cancer                    
-Beginning 1 4.7 0.19 0.83 25 8.6 0.2 0.94 84 8.8 0.16 0.96 177 9.2 0.15 0.98 234 8.5 0.13 0.97
-Middle 76 8.7 0.16 0.97 206 9.4 0.15 0.98 177 9.2 0.15 0.99 207 8.9 0.14 0.98 263 8.1 0.12 0.97
-End 224 14.8 0.22 0.99 253 8 0.12 0.97 245 8.6 0.13 0.97 245 8.6 0.13 0.97 245 8.6 0.13 0.97
Liver cancer                    
-Beginning 1 0.7 0.01 0.4 96 8.1 0.14 0.63 39 9 0.21 0.96  80 7.7 0.15 0.97  115 6.4 0.11 0.95
-Middle 47 8.1 0.18 0.98 85 7.3 0.14 0.96 81 7.7 0.15 0.97  103 6.7 0.12 0.96  144 5.7 0.09 0.94
-End 165 6.9 0.1 0.99 288 4.3 0.05 0.99 191 5 0.07 0.96 167 5.4 0.08 0.94  151 5.8 0.09 0.94
Colorectal cancer                    
-Beginning 1 5.5 0.21 0.86 3 7.2 0.25 0.94 26 7.8 0.17 0.98 124 8.5 0.14 0.97 320 7.6 0.1 0.95
-Middle 83 7.6 0.13 0.97 205 8.6 0.13 0.97 115 8.4 0.14 0.98 208 7.6 0.11 0.95 342 7.7 0.1 0.94
-End 216 14 0.2 0.99 302 7.5 0.1 0.96 302 7.5 0.1 0.96 272 8 0.11 0.96 272 8 0.11 0.96
Bladder cancer                    
-Beginning 1 4.1 0.01 0.47 81 10.3 0.16 0.88 26 8.7 0.14 0.96 25 8.7 0.14 0.97 118 9 0.11 0.95
-Middle 8 7.8 0.15 0.96 45 8.9 0.13 0.97 21 9 0.15 0.98 191 8.9 0.1 0.96 94 8.5 0.11 0.97
-End 68 13.9 0.19 0.98 84 9.9 0.13 0.96 91 9.3 0.12 0.96 91 9.3 0.12 0.96 95 8.5 0.11 0.96
Pancreatic cancers                    
-Beginning 0 0 0 0 1 6.7 0.18 0.87 96 11.2 0.16 0.94 17 11.1 0.2 0.98 95 8.5 0.11 0.97
-Middle 43 11.2 0.18 0.97 15 11.4 0.21 0.98 29 9.8 0.16 0.97 68 8.7 0.12 0.96 94 8.5 0.11 0.98
-End 95 8.5 0.11 0.99 95 8.5 0.11 0.99 95 8.5 0.11 0.98 95 8.5 0.11 0.98 95 8.5 0.11 0.98
Nasopharyngeal cancer                    
-Beginning 9 5.3 0.01 0.5 3 5.6 0.15 0.89 6 7.7 0.2 0.96 8 6.8 0.16 0.97 8 6.8 0.16 0.96
-Middle 9 5.3 0.12 0.98 8 6.4 0.15 0.97 9 5.8 0.13 0.96 8 6.8 0.16 0.95 8 6.8 0.16 0.96
-End 8 0.2 0.04 0.91 8 14.6 0.3 0.92 8 6.8 0.16 0.93 8 6.8 0.16 0.92 8 6.8 0.16 0.92

*Note: Source data came from age-specific incidence rates of top ten and all cancers from China cancer registry report 2012; Pmax, b and k represents the parameters in 
the logistic equation, yt=Pmax /(1+eb-kt), where t stands for age and yt, incidence rate for age t; R stands for goodness of fit between predicted and observed age-specific 
cancer incidence rates
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Table 2. Parameters and Goodness of Fit of Logistic Growth Models Based on Multiple 5-age-segment Cancer 
Incidence Data
Type of cancer Every other segment Every other 2 segments Every other 3 segments Every other 4 segment Every other 5 segments
 Pmax b k R Pmax b k R Pmax b k R Pmax b k R Pmax b k R

Lung cancer 485 9.2 0.13 0.96 517 9.3 0.13 0.96 484 9.2 0.13 0.96 530 8.6 0.12 0.95 224 10.4 0.17 0.63
Esophagus cancer 132 10 0.16 0.98 126 11.1 0.18 0.98 130 11.8 0.19 0.96 127 10.5 0.17 0.98 105 14.4 0.24 0.88
Gastric cancer 238 8.5 0.13 0.97 250 8.6 0.13 0.97 233 9.1 0.14 0.97 251 8.6 0.13 0.96 178 9.2 0.15 0.84
Liver cancer 167 5.4 0.08 0.94 156 5.9 0.09 0.94 158 5.9 0.09 0.94 129 7 0.12 0.89 90 7.6 0.14 0.78
Colorectal cancer 248 8.5 0.12 0.95 291 8.1 0.11 0.95 269 8 0.11 0.96 262 7.8 0.11 0.93 120 8.5 0.14 0.65
Bladder cancer 90 9.3 0.12 0.96 105 9.5 0.12 0.94 81 9.8 0.13 0.95 95 9.3 0.12 0.94 31 8.5 0.13 0.55
Cervical cancer 10 18.5 0.54 0.73 10 14.8 0.43 0.73 10 19.8 0.67 0.67 10 14.7 0.44 0.73 10 9.5 0.27 0.72
Breast cancer 44 12.1 0.29 0.9 43 10.9 0.27 0.9 42 11.7 0.28 0.89 44 16.5 0.47 0.74 46 9.2 0.22 0.89
Pancreatic cancer 95 8.5 0.11 0.98 80 8.9 0.12 0.97 83 9 0.12 0.97 90 8.4 0.11 0.97 33 10.7 0.17 0.62
Nasopharyngeal  cancer 8 6.8 0.16 0.92 8 7.2 0.17 0.92 8 8.5 0.2 0.91 7 8.4 0.21 0.89 9 6.3 0.14 0.87
All cancers 2248 6.5 0.09 0.97 2180 7.1 0.1 0.96 2229 6.6 0.09 0.97 1989 6.8 0.1 0.94 1151 7.2 0.12 0.75

*Note: Source data came from age-specific incidence rates of top ten and all cancers from China cancer registry report 2012; Pmax, b and k represents the parameters in 
the logistic equation, yt=Pmax/(1+eb-kt), where t stands for age and yt, incidence rate for age t; R stands for goodness of fit between predicted and observed age-specific 
cancer incidence rates

Single-segment fitting models
Table 3 and Figure 3 resulted from single-segment 

fittings. Goodness of fit (R) increased as the length of the 
data segment increased and this increase was dependent on 
the location of the segment of data entered for fitting. For 
a same length of segment (e.g., 15 ages), the older the age 
covered by the corresponding data segment, the higher the 
resulting R. As for the segment covering the oldest part of 
age-span, all the R values turned out to be very high. The 
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modeled parameters were also linked to the length and 
age-range covered by the data segment. For data segment 
covering beginning ages, all the 3 parameters increased 
as the length changed from 15 ages to 75 ages; while for 
data segment covering the end ages, Pmax increased yet b 
and k decreased as the length increased.

Discussion

Although typical S-shaped line graphs of age-specific 
cancer incidence rates are clearly observable with almost 
all cancer registry and other relevant epidemological 
reports worldwide, their relations with logistic growth 
equations have not been fully addressed. The current 
study demonstrated that logistic growth models perfectly 
describe the incidence rates along different age groups 
for most type of cancers. This may be explained by: a) 
onset of clinically detectable cancers results from the 
counteraction between cancer cell occurrence and removal 
(Baker et al., 2013); b) cancer cell occurs after a normal 
somatic cell has experienced multiple times (say n times) 
of damages due to exposure to same or different risk 
factors (Shaukat et al., 2013); c) a certain level of risk 
exposure defines a corresponding chance (q) for a normal 
somatic cell to get one time damage and hence the chance 
(qn) for an innate cell to mutate into cancer cell in an unit 
time period; d) given c, as time (t) passes by and somatic 
cell gets damaged for more and more times, its chance 
(p) for becoming malignant increases exponentially (p@
qn-qt); e) level of life spectrum exposure to cancer risk 
factors starts relatively low at birth, increases during 
childhood and adolescence (due initiation of unhealthy or 
unprotected behaviors), remains the highest in adulthood 
and begins to decrease gradually in late lifetime (due to 
reduced smoking, drinking etc.) (Katulanda et al., 2014; 
Chockalingam et al., 2013); f) cancer cell removal or 
immunity manifests similar lifetime trend as risk exposure 
(Wu et al., 2012). Therefore, the early low and relatively 
stable phase of the S-shaped age-specific cancer rates may 
reflect the combined effect of low cancer cell occurrence 
vs. high immunity; while the rapidly growing part, 
exponentially increasing occurrence vs. high and stable 
immunity; and the late high and relatively stable stage, 
diminishing occurrence due to reduced risk exposure vs. 

downward immunity.
Linking logistic growth law with age-specific cancer 

rates leads to a plausible thinking that description of cancer 
incidence or mortality rates along the whole age span is to 
estimate the parameters involved in the equations rather 
than uncover counts for each of the ages. Such a shift of 
focus may result in great resource reduction, since logistic 
equations generally involve only a few parameters (e.g., 3 
parameters in our cases) and estimation of these requires 
much less data than what have usually been collected. 
This is of particular significance to cancer registry. As 
suggested by our simulations (Table 2 and Figure 2), the 
work volume of current China national cancer registry 
could be reduced by 3 fourths without severely damage 
its capacity in producing age-specific cancer incidence 
rates. This should also apply to other registries. Given 
that over fifty countries have large scale operating cancer 
registry systems that consume huge amount of scarce 
resources year by year (Izquierdo et al., 2000; Tangka 
et al., 2010), a growth model-guided rethinking merits 
special attention. Even though segmental cancer registry 
may sound unacceptable to some, the findings suggest 
priority age groups for monitoring and controlling data 
quality of registry systems.

Logistic growth analysis may also inform data 
collection for intervention or hypothesis assessments. As 
shown in Table 3 and Figure 3, for a same length of data 
segment, the older the age covered by the data, the higher 
the goodness of fit of the resulting model. This suggests 
that, for studies evaluating the effect of an intervention 
or an influencing factor on cancer rates using limited age 
groups, backward sampling (i.e., start to choose from the 
oldest age group backward to younger ones) may work 
better than forward selection (from age 0-5 to 6-10 and 
then to 11-15 etc.). For studies that have yielded data 
showing differences in cancer rates between two groups 
(say, intervention vs control) of middle ages (say, ages 
30-59), simulated logistic growth equations may be used 
to measure extended difference (say for ages 60-69, or 
even 60 and over) between the two groups. However, the 
goodness of fit of models based on data covering middle 
segment of ages is only moderate.

In addition, logistic growth equations may help 
assessing data collections biases and/or errors under 
certain circumstances. If there are sufficient evidences 
to believe that certain age-specific cancer rates follow 
logistic growth law, then the goodness of fit estimations 
(Rs) can also be viewed as a quality indicator of the 
observed cancer counts. Of the ten cancers included 
in Table 1, cervical and breast cancers showed clear 
deviations from logistic equations. By excluding these 
two cancers, all the cancer-specific pairs of Rs (Table1, 
column 17 vs 21) showed a consistent trend, i.e., for any 
given cancer, the R of the model built upon observed data 
from urban residences was higher than or at least equal 
to that from rural people. This may indicate better cancer 
registry in urban than in rural China. The Rs for models 
of different cancers witnessed much greater variations 
ranging from 0.92 for nasopharyngeal cancer to 0.98 for 
esophagus and pancreatic cancers (Table 1, column 5). 
This suggests a need for tailored data quality control or 

Figure 3. Indicators of Single Segment-fitting Models 
for All Cancers. Blue, red and green histograms represent 
parameters of models built using data segment covering the 
beginning, middle and end part of age-span respectively
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improvement with special attention being paid to cancers 
with the lowest Rs. The varied biases and errors in the 
rates for different cancers in our case may be attributed 
to a whole range of reasons including number of cases 
registered (e.g., too few for nasopharyngeal cancer), 
physical symptoms and sings, easiness to get cancer 
tissues for pathologic diagnosis, availability of auxiliary 
examination techniques etc. 

Finally, readers are cautioned about a number of 
issues. First, this study used only most simple logistic 
growth equations and they do not fit very well with the 
observed data for some cancers, e.g., cervical and breast 
cancers. Such problems can be solved by adding more 
parameters and introducing more sophisticated growth 
equations. Second, parameters presented in this paper 
were all average estimates derived from pooled cancer 
counts reported by 72 CNCR sites in 2009. Age-specific 
incidence and mortality bands with means and 95% 
confidence intervals rather than single mean estimates 
may be produced by building similar set of logistic growth 
equations using the data from each CNCR sites (72 sets 
in total) and then performing bootstrap re-sampling and 
jackknife-correction (Dexter et al., 2013; Yu et al., 2013). 
Third, this paper focuses primarily on implications for data 
collection without any attention being paid to identifying 
trends and components with the cancer rates. Forth, 
apart from goodness of fit, this paper did not provide 
other performance indicators (sensitivity, specificity 
etc.) of the models used due to space limit. Most of these 
will be addressed separately in a forthcoming paper 
titled “modeling age-specific cancer incidence using 
logistic growth equations: jackknife-corrected bootstrap 
estimates”.
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