DOI QR코드

DOI QR Code

수중보를 고려한 하천에서 보존성 오염물질의 이송특성 분석 - 낙동강을 중심으로

Transportation Modeling of Conservative Pollutant in a River with Weirs - The Nakdong River Case

  • Lee, Jungwoo (Korea Institute of Civil Engineering and Building Technology) ;
  • Bae, Sunim (Department of Environmental Engineering, Chungnam National University) ;
  • Lee, Dong-Ryul (Korea Institute of Civil Engineering and Building Technology) ;
  • Seo, Dongil (Department of Environmental Engineering, Chungnam National University)
  • 투고 : 2014.10.29
  • 심사 : 2014.12.16
  • 발행 : 2014.12.31

초록

4대강 사업에 따른 수중보의 건설로 인해 낙동강을 포함한 우리 나라의 주요 하천들의 물리적 특성에 많은 변화가 있었으며 따라서 오염물질의 이동 특성 또한 변화하였을 것으로 판단된다. 낙동강에서 칠곡보와 강정보를 대상으로 임의의 오염물질 유출 사고에 대비하여 대책을 수립하는데 참고할 수 있도록 3차원 수리 수질모델, Environmental Fluid Dynamics Code (EFDC)을 활용하여 보존성 오염물질의 이동 확산 특성을 분석하였다. 가상적인 시나리오를 구성하며 구미공단에서 독성물질의 유출이 발생하였다고 가정하였을 때 칠곡보 및 강정보 지점에 오염물질이 도달하는 시간은 각각 약 2.22일과 9.83로서 4대강 사업 전에 비해 약 12배 이상 오염물질의 이동 시간이 지연된 것으로 분석되었다. 또한 대구광역시의 취수장을 구미시상류로 이전하였을 경우에 대한 모의 결과, 구미 상류의 유량의 감소에 따른 수위 및 유속의 감소에 의한 확산 현상의 증가로 인해, 독성물질의 하류 도달시간이 증가하는 것으로 나타났으며, 독성물질의 최대 검출 농도는 약 2% 정도 감소되는 것으로 산정되었다.

The 4major river project has caused changes in flow and water quality patterns in major rivers in Korea including the Nakdong River where several toxicant release accidents have had occurred. Three dimensional hydrodynamic model, the Environmental Fluid Dynamics Code (EFDC), was applied to evaluate the effect of geomorphological change of the river on the advection and dispersion patterns of a conservative toxic pollutant. A hypothetical scenario was developed using historical data by assuming a toxic release from an upstream location. If there is a toxic release at the Gumi Industrial Complex, the toxic material would be detected after 2.22 and 9.83 days at Chilgok and Gangjung weir, respectively, in the new river system. It was estimated that they took at least 12 times longer than those with the river conditions before the project. Effect of relocation of intake towers for Daegu Metro City to upstream of Gumi City was also evaluated using the developed modeling system. It was observed that hydraulic residence time would be increased due to decreased flow rate and thus due to lowered water level. However, peak concentration differences were found to be about 2% lower in both places due to increased dispersion effect after the relocation.

키워드

참고문헌

  1. Seo, D., Kim, M. and Ahn, J. H., "Prediction of Chlorophyll-a Changes due to Weir Constructions in the Nakdong River Using EFDC-WASP Modelling," Environ. Eng. Res., 17(2), 90-95(2012).
  2. Seo, D. I. and Canale, R. P., "Sediment Characteristics and Total Phosphorus Kinetics in Shagawa Lake," J. Environ. Eng., ASCE, 125(4), 346-350(1999). https://doi.org/10.1061/(ASCE)0733-9372(1999)125:4(346)
  3. Han, Y. and Seo, D. "Application of LID Methods for Sustainable Management of Small Urban Stream Using SWMM," J. Kor. Soc. Environ. Eng., 36(10), 691-697(2014). https://doi.org/10.4491/KSEE.2014.36.10.691
  4. Vorosmarty, C. J., Green, P., Salisbury, J. and Lammers, R. B., "Global Water Resources: Vulnerability from Climate Change and Population Growth," Science, 289, 284-288(2000). https://doi.org/10.1126/science.289.5477.284
  5. Billen, G., Garnier, J., Ficht, A. and Cun, C., "Modeling the response of water quality in the Seine River estuary to human activity in its watershed over the last 50 years," Estuaries, 24, 977-993(2001). https://doi.org/10.2307/1353011
  6. Korea Institute of Civil Engineering and Building Technology, The feasibility study of the relocation of drinking water intake towers from the Nakdong River, p. 665(2008).
  7. Choi, M. O., "A Case Study of Environmental Policy Formation : A Focus on the Phenol Spills in Nakdong River of 1991 and 2008," GRI Rev., 15(1), 91-112(2013).
  8. Korea Development Institute, Drinking water resource projects in Kyeongbuk and Daegu, pp. 474(2011).
  9. Cho, S. W. and Jun, K. S., "Dispersion of Nonconservative Contaminants Accidentally Released into Natural Streams," J. Kor. Water Resour. Assoc., 34(4), 289-301(2001).
  10. Yoon, J. S., Shin, C. K. and Hwang, D. J., "Diffusive Estimation of the Conservative Contaminant in River Estuary," J. Environ. Sanitary Eng., 23(3), 47-57(2008).
  11. Lee, J. and Lee, J., "Introduction to river/estuary/ocean circulation models," Magazine Kor. Water Resour. Assoc. - Water Future, 46(11), 73-82(2013). https://doi.org/10.3741/JKWRA.2013.46.1.73
  12. Hamrick, J. M., Three-Dimensional Environmental Fluid Dynamics Computer Code: Theoretical and Computational Aspects, Virginia Institute of Marine Science, School of Marine Science, College of William and Mary, pp. 126(1992).
  13. Ji, Z. G., Hydrodynamics and Water Quality: Modeling Rivers, Lakes, and Estuaries, Wiley-Interscience, pp. 704(2008).
  14. Wu, G. and Xu, Z., "Prediction of algal blooming using EFDC model: Case study in the Daoxiang Lake," Ecol. Model., 222(6), 1245-1252(2011). https://doi.org/10.1016/j.ecolmodel.2010.12.021
  15. Park, K., Jung, H. S., Kim, H. S. and Ahn, S. M., "Threedimensional hydrodynamic-eutrophication model (HEM-3D): application to Kwang-Yang Bay, Korea," Mar. Environ. Res., 60(2), 171-193(2005). https://doi.org/10.1016/j.marenvres.2004.10.003
  16. Kim, S. J., Seo, D. I. and Ahn, K. H., "Estimation of Proper EFDC Parameters to Improve the Reproductability of Thermal Stratification in Korea Reservoir," J. Kor. Water Resour. Assoc., 44(9), 741-751(2011). https://doi.org/10.3741/JKWRA.2011.44.9.741
  17. Seo, D., Sigdel, R., Kwon, K. H. and Lee, Y. S., "3-D hydrodynamic modeling of Yongdam Lake, Korea using EFDC," Desalination Water Treat., 19(1), 1-7(2010). https://doi.org/10.1080/19443994.2010.10513590
  18. Seo, D. and Kim, M., "Application of EFDC and WASP7 in series for Water Quality Modeling of the Yongdam Dam, Korea," J. Kor. Water Resour. Assoc., 44(6), 439-448(2011). https://doi.org/10.3741/JKWRA.2011.44.6.439
  19. Seo, D. and Song, Y., "Application of 3-D Hydrodynamics and Water Quality Model of the Youngsan River, Korea," Desalination Water Treat., 11, 1-9(2014).
  20. Ministry of Environment, 2012 statistics of water works, (2013).
  21. Ministry of Environment, 2012 statistics of sewerage(2013).
  22. Cho, S. W. and Jun, K. S., "Numerical simulation of the 1991 Nakdong River phenol accident," J. Kor. Water Resour. Assoc., 33(1), 673-678(2000).
  23. Bledzka, D., Gryglik, D. and Miller, J. S., "photolytic degradation of 4-tert-octylphenol in aqueous solution," Environ. Protect. Eng., 35(3), 235-247(2009).
  24. Johnson, A. C., White, C., Bhardwaj, L. and Jurgens, M. D., "Potential for octylphenol to biodegrade in some english rivers," Environ. Toxicol. Chem., 19(10), 2486-2492(2000). https://doi.org/10.1002/etc.5620191014
  25. Ying, G.-G., Williams, B. and Kookana, R., "Environmental fate of alkylphenols and alkylphenol ethoxylates-a review," Environ. Int., 28(3), 215-226(2002). https://doi.org/10.1016/S0160-4120(02)00017-X

피인용 문헌

  1. in the river ecosystems, South Korea pp.418, 2017, https://doi.org/10.1051/kmae/2017044