DOI QR코드

DOI QR Code

Effect of Food Waste Mixing on Hydrogen Gas Production in Anaerobic Digestion of Brown Water from Urine Diversion Toilet

소변분리변기오수(Brown water)의 혐기성 처리 시 음식물 쓰레기 혼합에 따른 수소생산 특성

  • Seong, Chung-Yeol (Department of Environmental Engineering, Changwon National University) ;
  • Yoon, Cho-Hee (Department of Urban Environmental Engineering, Kyungnam University) ;
  • Seo, Gyu-Tae (Department of Environmental Engineering, Changwon National University)
  • Received : 2014.11.13
  • Accepted : 2014.12.26
  • Published : 2014.12.31

Abstract

The study was conducted to evaluate the effect of addition of food waste in brown water for anaerobic hydrogen production. Batch experiment was carried out to determine appropriate food waste to brown water mixing ratio. Maximum hydrogen yield of $6.92mmol\;H_2/g\;COD_{removed}$ was obtained at 70% food waste and 30% brown water. Semi-pilot scale reactor was operated based on result of batch experiment. Semi-pilot reactor operated, mixing 70% food waste and 30% brown water showed significant increment in butyric acid concentration. B/P (Butyric to propionic acid ratio) which is considered as governing factor for hydrogen production was found high (52.64). Maximum hydrogen yield of $25.03mmol\;H_2/g\;COD_{removed}$ was obtained. Result of this study concluded that mixing of food waste to brown water at appropriate ratio assists in enhanced hydrogen fermentation.

본 연구는 수소가스 생산을 위한 brown water(소변을 제외한 대변 + 대변세척수 6 L)의 혐기성 소화 시, 음식물쓰레기 혼합 효과를 평가하기 위해 실시하였다. brown water와 음식물쓰레기의 적절한 혼합 비율을 찾기 위해 회분식 실험이 수행되었고, 도출된 결과는 연속운전 세미파일럿 규모 brown water의 혐기성 소화장치의 실험에 적용되었다. 회분식 실험에서 70%의 음식물쓰레기와 30%의 brown water을 혼합하였을 때 $6.92mmol\;H_2/g\;COD_{removed}$의 최대 수소생산수율을 나타내었다. 동일한 혼합비율로 투입한 음식물쓰레기 및 brown water의 세미파일럿 규모 혐기성 소화조를 운전하였을 때, 반응조 내부에서 수소생산의 중간산물인 butyric acid의 현저한 증가를 보였다. 이 때 수소 생산의 지표인 B/P (butyrate/propionate) 비는 52.64로 나타났고, 수소생산수율은 최대 $25.03mmol\;H_2/g\;COD_{removed}$로 나타났다. 이상의 실험적 연구결과 brown water의 혐기성 수소발효에서 음식물쓰레기의 혼합은 수소발생을 촉진하기 위한 좋은 대안임을 확인하였다.

Keywords

References

  1. Jun, W. L. and Jing, Y. W., "Enhanced hydrolysis and methane yield by alying microaeration pretreatment to the anaerobic co-digestion of brown water and food waste," Waste Manage., 33(4), 813-819(2013). https://doi.org/10.1016/j.wasman.2012.11.013
  2. Kujawa-Roeleveld, K., Elmitwalli, T. and Zeeman, G., "Enhanced primary treatment of concentrated black water and kichen residues within DESAR concept using two types of anaerobic digesters," Water Sci. Technol., 53(9), 159-166(2006).
  3. Elmitwalli, T., Van Leeuwen, M., Kujawa-Roeleveld, K. and Sanders, W., "Anaerobic biodegradability and digestion in accumulation systems for concentrated black water and kitchen organic waste," Water Sci. Technol., 53(8), 167-175 (2006).
  4. Liu, X., Ji, M. and Han, L., "Hydrogen and methane production by co-digestion of waste activated sludge and food waste in the two-stage fermentation process:substrate conversion and energy yield," Bioresour. Technol., 146, 317-323 (2013). https://doi.org/10.1016/j.biortech.2013.07.096
  5. Kujawa-Roeleveld, K. and Zeeman, G., "Anaerobic treatment in decentralised and source-separation-based sanitation concepts," Rev. Environ. Sci. Bio. Technol., 5(1), 115-139(2006). https://doi.org/10.1007/s11157-005-5789-9
  6. Wendland, C., Deegener, S., Behrendt, J., Toshev, P. and Otterpohl, R., "Anaerobic digestion of black water from vacuum toilets and kitchen refuse in a continuous stirred tank reactor (CSTR)," Water Sci. Technol., 55(7), 187-194(2007).
  7. Kujuwa-Roeleveld, K., "Anaerobic treatment of concentrated wastewater in DESAR concenpts," Stowa. Utrecht. The Netherlands(2005).
  8. Meulman, B., Zeeman, G. and Buisman, C. J. N., "Treatment of concentrated black water on pilot scale: options and challenges. In proceedings of the sanitation challenge; wageningen," The Netherlands, pp. 19-21(2008).
  9. Kujawa-Roeleveld, K., Fernandes, T., Wiryawan, Y., Tawfik, A., Visser, M. and Zeeman, G., "Performance of UASB septic tank for treatment of concentrated black water within DESAR concept," Water Sci. Technol., 52(1-2), 307-313 (2007).
  10. Rajinikanth, R., Lim, J. W. and Mao, Y., "Anaerobic codigestion of source segregated brown water (feces-withouturine) and food waste: For singapore context," S. Total Environ., 443(15), 877-886(2013). https://doi.org/10.1016/j.scitotenv.2012.11.016
  11. Han, S. K. and Kim, S. H., "UASB treatment of wastewater with VFA and alchol generated during hydrogen fermentation of food waste" Proc. Biochem., 40(8), 2897-2905(2005). https://doi.org/10.1016/j.procbio.2005.01.005
  12. Kim, S. H., Han, S. G., Yoon, J. H. and Shin, H. S., "Continuous Anaerobic H2 production with a mixed culture," J. Kor. Ind. Eng. Chem., 24(1), 70-76(2003).
  13. Han, S. G., Kim, H. W. and Shin, H. S., "Enhanced hydrogen fermentation of food waste," J. Kor. Ind. Eng. Chem., 11(4), 105-113(2003).
  14. Arooj, M. F, Han, S. K., Kim, S. H., Kim, D. H. and Shin, H. S., "Effect of HRT on ASBR converting starch into biological hydrogen," Int. J. Hydro. Energy, 33(22), 6509-6514(2008). https://doi.org/10.1016/j.ijhydene.2008.06.077
  15. Boon, D. R., "Terminal reactions in the anaerobic digestion of animal waste," Alied Environ. Microbiol., 43(1), 57-64 (1982).
  16. Sung, S., Raskin, S., Duagmanee, T., Padmasiri, S. and Simmons, J. J., "Hydrogen Production by Anaerobic Microbial Commnities Exposed to Repeated Heat Treatments," Proceedings of the 2002 U.S. DOE Hydrogen program Review NREL/CP-610-32405(2002).
  17. Hussy, I., Haukes, F. R., Dinsdale, R. and Hawkes, D. L., "Continuous fermentative hydrogen production from a wheat starch co-product by mixed microflora," Biotechnol. Bioeng., 84(6), 619-627(2003). https://doi.org/10.1002/bit.10785
  18. Fuentes, M., Scenna, N. J. and Aguirre, P. A., "Anaerobic digestion of Carbohydrate and protein-based waste waters in fluidized bed bioreactors," Latin Am. Alied Res., 37, 235-242(2007).
  19. Marthe, S., Graaff, D., Temmink, H., Zeeman, G., Cees, J. and Buisman., N., "Anaerobic Treatment of Concentrated Black Water in a UASB Reactor at a Short HRT," Water Journal ISSN 2073-4441, pp. 101-119(2010).
  20. Kim, D. H., Kim, S. H., Kim, K. Y. and Shin, H. S., "Experience of a pilot-scale hydrogen-producing anaerobic sequencing batch reactor(ASBR) treating food waste," Int. J. Hydro. Energy, 35(4), 1590-1594(2010). https://doi.org/10.1016/j.ijhydene.2009.12.041