DOI QR코드

DOI QR Code

Lowess and outlier analysis of biological oxygen demand on Nakdong main stream river

낙동강 본류 측정소들의 생물학적 산소요구량 수치에 대한 비모수적 회귀분석과 특이점분석

  • Kim, Jong Tae (Department of Computing and Statistics, Daegu University)
  • Received : 2013.12.09
  • Accepted : 2014.01.07
  • Published : 2014.01.31

Abstract

This paper is based on water information system of NIE, National Institute of Environmental Research. We used monthly data of water quality from January, 2013 to August, 2013 starting from measuring point A (nbA) to measuring point N (nbN) located along the Nakdong river main stream. Statistical water quality analysis of BOD (biological oxygen demand) is specified by R programming depending on month, year, and points. Based on BOD measured from Nakdong river's measuring points, we used exploratory data analysis and locally weighted scatter plot smoother (Lowess) trend analysis, which is a method of non-parametic regression analysis, to analyze long-term water tendency and water quality distribution depending on points. Also, we analyzed the period and the measuring point of which the outliers are abundant. As a result, compared to BOD measured in nbM located in Busan along the downstream, BOD measured in nbG located in Daegu and nbI located in Changwon along the midstream showed higher rate of water pollution at a severe level.

본 연구는 국립환경과학원의 물환경정보시스템에서 제공한 자료를 사용하였다. 자료는 낙동강 본류 (낙본, nb)의 수질측정소 A지역에서 측정소 N지역까지 2003년 1월부터 2013년 8월까지 측정한 월별 수질데이터를 이용하였다. 생물학적 산소요구량 BOD (biological oxygen demand)의 통계학적 수질분석은 월별, 연도별, 지역별로 R 프로그래밍을 이용하여 구체화 하였다. 낙본지역 측정소들의 BOD에 대하여 탐색적 자료분석 (exploratory data analysis) 방법과 비모수 회귀분석방법 중 하나인 Lowess (locally weighted scatter plot smoother) 경향분석법을 이용하여 장기수질경향과 지역별 수질분포의 현황을 분석하였다. 그리고 특이점 (outlier)이 가장 많이 발생하는 시기와 낙본 측정지역들을 분석하였다. 그 결과 낙본하류지역인 부산광역시 강서구 명지동 측정소 nbM의 BOD 수질환경 보다 낙본중류지역인 대구광역시 달성군 구지면의 측정소 nbG와 경상남도 창원시의 측정소 nbI 지역의 수질오염이 보다 심각한 문제점들이 있는 것으로 나타난다.

Keywords

References

  1. Cleveland, W. S. (1979). Robust locally weighted regression and smoothing scatterplots. Journal of American Statistician Assocociation, 74, 829-836. https://doi.org/10.1080/01621459.1979.10481038
  2. Cleveland, W. S. (1993). Visualizing data, Hobart Press, New York.
  3. Cleveland, W. S. and Devlin, S. J. (1988). Locally weighted regression: An approach to regression analysis by local fitting. Journal of American Statistician Assocociation, 83, 596-610. https://doi.org/10.1080/01621459.1988.10478639
  4. Jacoby, W. G. (2000). Loess: a nonparametric, graphical tool for depicting relationships between variables. Electoral Studies, 19, 577-613. https://doi.org/10.1016/S0261-3794(99)00028-1
  5. Lee, H. S. and Lee, S. U. (2006). A study on the long-term trend analyses of water qualities in Nakdong river. Proceedings of the Autumn Conference of Korean Society of Environmental Engineers, 1144-1149.
  6. Kang, H., Jang, J. H., Ahn, J. H. and Kim, I. J. (2011). Numerical estimations of Nakdong river flows through linking of watershed and river flow models. Journal of Korea Water Resource Association, 44, 577-590. https://doi.org/10.3741/JKWRA.2011.44.7.577
  7. Kim, J. H. and Park, S. S. (2004). Long-term trend analysis of water qualities in Nakdong river based on non-parametric statistical methods. Journal of Korean Society Water Quality, 20, 63-71.
  8. Kim, J. T., Lee, B. J. and Kim, J. Y. (2007). Trend analysis of distribution of stream qualities in Gumho river. Journal of the Korean Data & Information Science Society, 18, 713-719.
  9. Huh, J. (2012). Bandwidth selection for discontinuity point estimation in density. Journal of the Korean Data & Information Science Society, 23, 79-87. https://doi.org/10.7465/jkdi.2012.23.1.079

Cited by

  1. Outlier detection and treatment in industrial sampling survey vol.27, pp.1, 2016, https://doi.org/10.7465/jkdi.2016.27.1.131
  2. An improvement plan of mathematics academic achievement in the H/W curriculum vol.26, pp.4, 2015, https://doi.org/10.7465/jkdi.2015.26.4.801
  3. A Study on the Water Quality Management of Modular Revetment Structure installed Low-Maintenance Constructed Wetland vol.17, pp.2, 2015, https://doi.org/10.17663/JWR.2015.17.2.184
  4. Verification of water environment monitoring network representativeness under estuary backwater effects vol.190, pp.8, 2018, https://doi.org/10.1007/s10661-018-6849-2
  5. Patterns and Trends of Water Level and Water Quality at the Namgang Junction in the Nakdong River Based on Hourly Measurement Time Series Data vol.27, pp.2, 2018, https://doi.org/10.5322/JESI.2018.27.2.63
  6. 금호강 수계 난분해성 유기오염물질에 대한 시·공간적 특성 분석 vol.24, pp.11, 2014, https://doi.org/10.5322/jesi.2015.24.11.1343
  7. 계절 맨-켄달 기법을 이용한 금호강 본류 BOD의 장기 경향 분석 및 탐색적 자료 분석 vol.25, pp.2, 2014, https://doi.org/10.5322/jesi.2016.25.2.217
  8. 낙동강 수계의 수질오염총량 자료를 이용한 비모수적 수질추세 분석 vol.33, pp.1, 2014, https://doi.org/10.15681/kswe.2017.33.1.40
  9. An Analysis of Long-term Changes in Water Quality of Geumho River using Statistical Techniques vol.27, pp.10, 2018, https://doi.org/10.5322/jesi.2018.27.10.883
  10. 장기 모니터링 자료를 이용한 팔당호 수질변화의 비모수적 추세분석 vol.28, pp.2, 2014, https://doi.org/10.14249/eia.2019.28.2.83
  11. 낙동강수계 물환경측정망 자료를 이용한 비모수적 수질 경향 비교 및 분석 vol.29, pp.1, 2014, https://doi.org/10.14249/eia.2020.29.1.61