DOI QR코드

DOI QR Code

Derivation of the likelihood function for the counting process

계수과정의 우도함수 유도

  • Received : 2013.12.19
  • Accepted : 2014.01.12
  • Published : 2014.01.31

Abstract

Counting processes are widely used in many fields, whose properties are determined by the intensity function. For estimation of the parameters of the intensity functions when the process is observed continuously over a fixed interval, the likelihood function is of interest. However in the literature there are only heuristic derivations and some results are not coincident. We thus in this note derive the likelihood function of the counting process in a rigorous way. So this note fill up a hole in derivation of the likelihood function.

계수과정은 다양한 분야에서 활용되고 있으며 그 성질은 강도함수에 의해 결정된다. 일정 구간에서 연속적으로 과정이 관측될 때, 우도함수를 이용하여 강도함수의 모수를 추정할 수 있다. 그러나 기존의 연구는 직관적인 방법에 의한 우도함수 유도이며, 여러 명의 저자에 의해 얻은 우도함수가 일치하지 않아 우도함수를 이용한 최우추정치를 구하는 문제 등의 적용에 어려움이 발생하고 있다. 따라서 이 단신연구에서는 계수과정의 우도함수를 엄밀한 방법으로 유도하여 기존의 문제점을 해결한다.

Keywords

References

  1. Andersen, P. K., Borgan, O., Gill, R. D. and Keiding, N. (1993). Statistical models based on counting processes, Springer, New York.
  2. Anderson, R. M. and May, R. M. (1991). Infectious diseases of humans: Dynamics and control, Clarendon Press, Oxford.
  3. Andersson, H. and Britton, T. (2000). Stochastic epidemic models and their statistical analysis, Springer-Verlag, New York.
  4. Bailey, N. T. J. (1975) The mathematical theory of infectious diseases and its applications, Griffin, London.
  5. Becker, N. G. and Britton, T. (1999). Statistical studies of infectious disease incidence. Journal of the Royal Statistical Society B, 61, 287–307. https://doi.org/10.1111/1467-9868.00177
  6. Cauchemez, S. and Ferguson, N. M. (2008). Likelihood based estimation of continuous-time epidemic models from time-series data: Application to measles transmission in London. Journal of the Royal Society Interface, 5, 885–897. https://doi.org/10.1098/rsif.2007.1292
  7. Daley, D. J., Gani, J. (1999). Epidemic modelling: An introduction, Cambridge University Press, New York.
  8. Diekmann, O. and Heesterbeek, J. A. P. (2000). Mathematical epidemiology of infectious diseases: Model building, analysis and interpretation, Wiley, New York.
  9. Ha, I. and Cho, G. (2012). H-likelihood approach for variable selection in gamma frailty models. Journal of the Korean Data & Information Science Society, 23, 199-207. https://doi.org/10.7465/jkdi.2012.23.1.199
  10. Hohle, M. and Jorgensen, E. (2002). Estimating parameters for stochastic epidemics, Dina research report No. 102, Danish Institute of Agricultural Sciences, Research Centre Foulum, Denmark.
  11. Huggins, M., Yip, P. S. F. and Lau, E. H. Y. (2004). A note on the estimation of the initial number of susceptible individuals in the general epidemic model. Statistics & Probability Letters, 67, 321-330. https://doi.org/10.1016/j.spl.2002.02.001
  12. Kang, S. G., Lee, J. H. and Lee, W. D. (2012). Likelihood based inference for the ratio of parameters in two Maxwell distributions. Journal of the Korean Data & Information Science Society, 23, 89-98. https://doi.org/10.7465/jkdi.2012.23.1.089
  13. Kypraios, T. (2009). A note on maximum likelihood estimation of the initial number of susceptibles in the general stochastic epidemic model. Statistics & Probability Letters, 79, 1972–1976. https://doi.org/10.1016/j.spl.2009.06.003
  14. McKendrick, A. G. (1926). Applications of mathematics to medical problems. Proceedings of the Edinburgh Mathematical Society, 44, 98-130.
  15. Oh, C. (2013). Approximation of estimates in the susceptible-infectious-removed epidemic model. Journal of Mathematics and Statistics, 9, 38-42. https://doi.org/10.3844/jmssp.2013.38.42
  16. O'Neill, P. D. and Roberts, G. O. (1999). Bayesian inference for partially observed stochastic epidemics, Journal of the Royal Statistical Society A, 162, 121-129. https://doi.org/10.1111/1467-985X.00125
  17. Rida, W. N. (1991). Asymptotic properties of some estimators for the infection rate in the general stochastic epidemic model. Journal of the Royal Statistical Society B, 53, 269-283.
  18. Schutt, R. (2010). Topics in model-based population inference, Ph.D. thesis, Columbia University, New York.

Cited by

  1. A transmission distribution estimation for real time Ebola virus disease epidemic model vol.26, pp.1, 2015, https://doi.org/10.7465/jkdi.2015.26.1.161
  2. A study on the spread of the foot-and-mouth disease in Korea in 2010/2011 vol.25, pp.2, 2014, https://doi.org/10.7465/jkdi.2014.25.2.271