DOI QR코드

DOI QR Code

Mode II and Mixed Mode Fracture of Single Layer Graphene Sheet

단층 그래핀시트의 모드 II 및 혼합모드 파괴

  • 웬민키 (울산대학교 기계공학부) ;
  • 염영진 (울산대학교 기계공학부)
  • Received : 2013.05.06
  • Accepted : 2013.12.09
  • Published : 2014.02.01

Abstract

The mode II fracture behavior of a single-layer graphene sheet (SLGS) containing a center crack was characterized with the results of an atomistic simulation and an analytical model. The fracture of zigzag graphene models was analyzed with molecular dynamics and the mode II fracture toughness was found to be $2.04MPa{\sqrt{m}}$. The in-plane shear fracture of a cellular material was analyzed theoretically for deriving the $K_{IIc}$ of SLGS, and FEM results were obtained. Mixed-mode fracture of SLGS was studied for various mode I and mode II ratios. The mixed-mode fracture criterion was determined, and the obtained fracture envelope was in good agreement with that of another study.

중앙에 균열을 갖는 단층 그래핀시트(single layer graphene sheet, SLGS)의 모드 II 파괴 거동을 원자 시뮬레이션과 해석 모델에 기초하여 고찰하였다. 지그재그 그래핀 모델의 파괴를 분자동역학(molecular dynamics, MD)에 의해 해석한 결과 모드 II 파괴인성은 $2.04MPa{\sqrt{m}}$인 것으로 밝혀졌다. 또한 SLGS의 이론적인 $K_{IIc}$를 유도하기 위해 면내전단하중을 받는 다공체에 대한 파괴역학적 해석도 진행하였고 유한요소해석도 병행하였다. 모드 I과 모드 II의 비를 다양하게 변화시켜가면서 SLGS 의 혼합모드 파괴를 검토한 결과 혼합모드 파괴조건식이 얻어졌고 다른 문헌의 결과와 비슷함을 알 수 있었다.

Keywords

References

  1. Zhu, T., Li, J., Ogata, Shigenobu and Yip, S., 2009, "Mechanics of Ultra-Strength Materials," Materials Research Society Bulletin, 34, pp.167-172. https://doi.org/10.1557/mrs2009.47
  2. Gibson, L.-J. and Ashby, M.-F., 1997, "Cellular Solids: Structure and Properties," Cambridge: Cambridge University Press, 2nd ed.
  3. Maiti, S.-K., Ashby, M.-F. and Gibson, L.-J., 1984, "Fracture Toughness of Brittle Cellular Solids" Scripta Metall., 18, pp. 213-217. https://doi.org/10.1016/0036-9748(84)90510-6
  4. Thiyagasundaram P., Wang, J., Sankar B. V. and Arakere N. K., 2011, "Fracture Toughness of Foams with Tetrakaidecahedral Unit Cells Using Finite Element Based Micromechanics," Engineering Fracture Mechanics, 78, pp. 1277-1288. https://doi.org/10.1016/j.engfracmech.2011.01.003
  5. Choi, S and Sankar, B.-V, 2003, "Fracture Toughness of Carbon Foam," Journal of Composite Materials, Vol. 37, No. 23, pp. 2101-2116. https://doi.org/10.1177/002199803036264
  6. Jin, Y. and Yuan, F.-G, 2005, "Nanoscopic Modeling of Fracture of 2D Graphene Systems," Journal of Nanoscience and Nanotechnology, 5, pp. 601-608. https://doi.org/10.1166/jnn.2005.071
  7. Yanovsky, Yu.G., Nikitina, E.A., Karnet, Yu.N. and Nikitin, S.M., 2009, "Quantum Mechanics Study of the Mechanism of Deformation and Fracture of Grapheme," Physical Mesomechanics, Vol. 12, Issues 5-6, pp. 254-262. https://doi.org/10.1016/j.physme.2009.12.007
  8. Udupa, A. and Martini, A., 2011, "Model Predictions of Shear Strain-Induced Ridge Defects in Grapheme," Carbon 49, pp. 3571-3578. https://doi.org/10.1016/j.carbon.2011.04.057
  9. Niaki, S.-A., Mianroodi, J.-R., Sadeghi M. and Naghdabadi, R., 2012, "Dynamic and Static Fracture Analyses of Graphene Sheets and Carbon Nanotubes," Composite Structures, 94, pp. 2365-2372. https://doi.org/10.1016/j.compstruct.2012.02.027
  10. Wen, H.-D., Gong, K. and Wang, Q., 2011, "Controlling the Formation of Wrinkles in a Single Layer Graphene Sheet Subjected to In-Plane Shear," Carbon 49, pp. 3107-3112. https://doi.org/10.1016/j.carbon.2011.03.033
  11. Tsai, J.-L, Tzeng, S.-H. and Tzou, Y.-J., 2010, "Characterizing the Fracture Parameters of a Grapheme Sheet Using Atomistic Simulation and Continuum Mechanics," International Journal of Solids and Structures, Vol. 47, Issues 3-4, pp. 503-509. https://doi.org/10.1016/j.ijsolstr.2009.10.017
  12. Stuart, S.-J, Tutein, A.-B. and Harrison, J.-A., 2000, "A Reactive Potential for Hydrocarbons with Intermolecular Interactions," J. Chem Phys. Vol. 112, Issue 14, pp. 6472-6486. https://doi.org/10.1063/1.481208
  13. Plimpton, S.-J., 1995, "Fast Parallel Algorithms for Short-Range Molecular Dynamics," J. Comp. Phys. 117, pp. 1-19. https://doi.org/10.1006/jcph.1995.1039
  14. Anderson, T.-L., 1995, "Fracture Mechanics: Fundamentals and Applications," CRC Press.
  15. http://lammps.sandia.gov/;
  16. Steven, C and Buehler, M.-J., 2011, "Twisted and Coiled Ultralong Multilayer Graphene Ribbons," Modelling Simul. Mater. Sci. Eng, 19, 054003, p. 20.
  17. Qi, Z., Zhao, F., Zhou X., Sun, Z., Park, H.-S and Wu, H., 2010, "A Molecular Simulation Analysis of Producing Monatomic Carbon Chains by Stretching Ultra Narrow Graphene Nanoribbons," Nanotechnology, 21, 265702. https://doi.org/10.1088/0957-4484/21/26/265702
  18. Scarpa, F., Adhikari, S. and Phani A.-S., 2009, "Effective Elastic Mechanical Properties of Single Layer Graphene Sheets," Nanotechnology, 20, 065709. https://doi.org/10.1088/0957-4484/20/6/065709
  19. Liu, F., Ming, P. and Li, J., 2007, "Ab Initio Calculation of Ideal Strength and Phonon Instability of Graphene Under Tension," Physical Review B, 76, 064120. https://doi.org/10.1103/PhysRevB.76.064120
  20. ANSYS User's Manual, Version 12.1, 2009 (ANSYS Software Inc.).
  21. Huang, J.-S. and Gibson, L.-J, 1991, "Fracture Toughness of Brittle Honeycombs," Acta Metallurgica et Materialia, 39, pp. 1627-1636. https://doi.org/10.1016/0956-7151(91)90250-5
  22. Shi, W., Mu, G. and Li, H., 2008, "Relationship Between the Stress Intensity Factors and Bond $\sigma$ in Graphene Sheet," Int J Fract, 149, pp. 105-111. https://doi.org/10.1007/s10704-008-9237-z
  23. Bin Zhang, Mei L., and Xiao H., 2012, "Nanofracture in Graphene Under Complex Mechanical Stresses," Applied Physics Letters, 101, 121915. https://doi.org/10.1063/1.4754115
  24. Banks, S.-L., Arcan, M. and Bortman, Y., 1984, "A Mixed Mode Fracture Specimen for Mode II Dominant Deformation," Engng Fract Mech, 20(1), pp. 145-157. https://doi.org/10.1016/0013-7944(84)90122-X
  25. Banks, S.-L. and Arcan, M., 1986, "A Compact Mode II Fracture Specimen, Fracture Mechanics," ASTM STP, 905, Vol. 17, pp. 347-363.
  26. Shim, J.R., Lee, Y.S., Kim, D.H., Beom, H.G. and Kang, K.J., 2002, "Measurement of Fracture Toughness Jc Under Mixed Mode Loading Using Unloading Compliance Method," Trans. Korean Soc. Mech. Eng. A, Vol. 26, No. 1, pp. 113-120. https://doi.org/10.3795/KSME-A.2002.26.1.113
  27. Yum, Y.J. and You, H., 1999, "Strain Energy Release Rate of Carbon/Epoxy Composite Material under Mixed Mode Delamination," The Journal of the Korean Society for Composite Materials, Vol. 12, No. 3, pp. 66-74.
  28. Spencer, B. and Barnby, J.T., 1976, "The Effects of Notch and Fibre Angles on Crack Propagation in Fibre-Reinforced Polymers," Journal of Materials Science, Vol. 11, Issue 1, pp.83-88. https://doi.org/10.1007/BF00541078