DOI QR코드

DOI QR Code

경수로 핵연료 열-구조 연계 해석을 위한 다차원 간극 열전도도 모델 개발

Development of Multidimensional Gap Conductance Model for Thermo-Mechanical Simulation of Light Water Reactor Fuel

  • 김효찬 (한국원자력연구원 경수로핵연료기술개발부) ;
  • 양용식 (한국원자력연구원 경수로핵연료기술개발부) ;
  • 구양현 (한국원자력연구원 경수로핵연료기술개발부)
  • Kim, Hyo Chan (LWR fuel technology division, Korea Atomic Energy Research Institute) ;
  • Yang, Yong Sik (LWR fuel technology division, Korea Atomic Energy Research Institute) ;
  • Koo, Yang Hyun (LWR fuel technology division, Korea Atomic Energy Research Institute)
  • 투고 : 2013.09.09
  • 심사 : 2013.12.05
  • 발행 : 2014.02.01

초록

경수로 핵연료가 원자로내에서 연소되는 동안 핵연료 펠릿에서부터 피복관까지 온도해석은 핵연료 안전 해석에 있어 중요한 요소이며, 경수로 핵연료 온도 해석을 하기 위해서는 간극 모델 개발이 필수적이다. 간극 열전도도는 특성상 간극 두께값에 의존적이게 되며 이러한 특성으로 인해 다차원 간극 열전도도 모델이 비선형적 거동을 보인다. 본 연구에서는 선형화된 다차원 간극 열전도도 모델 개발을 위해 가상 연결 간극 요소를 제안하였다. 제안된 간극 연결 요소에 간극 열전도도를 적용하기 위해 등가 열전달 계수를 정의하였다. 제안된 모듈을 평가하기 위해 상용코드 ANSYS APDL 을 이용하여 열-구조 연계 해석 모듈을 구현하였으며, 다양한 예제를 통해 정확성과 수렴성을 평가하였다.

A light water reactor (LWR) fuel rod consists of zirconium alloy cladding tube and uranium dioxide pellets with a slight gap between them. The modeling of heat transfer across the gap between fuel pellets and the protective cladding is essential to understanding fuel behavior under irradiated conditions. Many researchers have been developing fuel performance codes based on finite element method (FE) to calculate temperature, stress and strain for multidimensional analysis. The gap conductance model for multi-dimension is difficult issue in terms of convergence and nonlinearity because gap conductance is function of gap thickness which depends on mechanical analysis at each iteration step. In this paper, virtual link gap element (VLG) has been proposed to resolve convergence issue and nonlinear characteristic of multidimensional gap conductance. In terms of calculation accuracy and convergence efficiency, the proposed VLG model has been evaluated for variable cases.

키워드

참고문헌

  1. Lamarsh, J.R. and Baratta, A.J., 2012, Introduction to Nuclear Engineering, Third edition, Prentice-Hall, Inc.
  2. Kim, S.H., 2010, Incore Fuel Management, Hyungseul
  3. Ross, A.M. and Stoute, R.L., 1962, Heat transfer coefficient between UO2 and Zircaloy-2, ACEL-1552.
  4. Knuutila, A., 2006, Improvements on FRAPCON3/ FRAPTRAN Mechanical Modeling, VTT-R-11337-06, VTT.
  5. Suzuki, M., 2000, Light Water Reactor Fuel Analaysis Code FEMAXI-V, JAERI-DATA/Code 2000-030.
  6. Konings, J.M., 2012, Comprehensive Nuclear Materials, Elsevier, Waltham, pp. 682-691.
  7. Hansen, G., 2011, "A Jacobian-Free Newton Krylov Method for Mortar-Discretized Thermomechanical Contact Problems," Journal of Computational Physics, Vol. 230, pp. 6546-6562. https://doi.org/10.1016/j.jcp.2011.04.038
  8. Ainscough, J.B., 1982, Gap Conductance in Zircaloy-Clad LWR Fuel Rods, OECD-NEA, CSNI Report No. 72.
  9. Soba, A. and Denis, A., 2008, "Simulation with DIONISIO 1.0 of Thermal and Mechanical Pellet-Cladding Interaction in Nuclear Fuel Rods," Journal of Nuclear Materials, Vol. 374, pp. 32-43. https://doi.org/10.1016/j.jnucmat.2007.06.020
  10. Kim, H.C., Yang, Y.S. and Koo, Y.H., 2013, "Development of FE-Based Gap Conductance Model Using Adaptive Link Element," Proceeding of KSME for CAE and Applied Mechanics, Pusan, Korea, pp. 303-304.
  11. Kim, H.C., Yang, Y.S., Kim, D.H., Bang, J.G., Kim, S.K. and Koo, Y.H., 2012, "Study of Gap Conductance Model for Thermo-Mechanical Fully Coupled Finite Element Model," Transactions of the Korean Nuclear Society Autumn Meeting, Gyeongju, Korea.
  12. ANSYS R&D Inc., "ANSYS Manuals," 2010.

피인용 문헌

  1. Simulation of Asymmetric Fuel Thermal Behavior Using 3D Gap Conductance Model vol.39, pp.3, 2015, https://doi.org/10.3795/KSME-A.2015.39.3.249