INTRODUCTION

Various histological types of tumors arise in the pineal region. The most common tumors are pineal parenchymal tumors and germ cell tumors. Primary malignant melanoma is very rare in central nervous system and only 3.6% of these tumors arise in the pineal region. To our knowledge, only 17 cases of pineal malignant melanomas have been reported since 1899.

 Generally, malignant melanomas are known as radio-resistant tumor and the role of many treatment modalities are controversial. Here we report a rare case of primary pineal malignant melanoma with favorable outcome, which was totally removed by surgery and followed by radiotherapy.

CASE REPORT

A 59-year-old male patient had 5-month history of gait disturbance and memory impairment. His initial brain computed tomography scan showed 3.5×2.8 cm sized mass with high density in the pineal region. The tumor was hypointense on T2 weighted magnetic resonance images and hyperintense on T1 weighted magnetic resonance images with heterogenous enhancement of central portion. The tumor was totally removed via the occipital transtentorial approach. Black mass was observed in the operation field, and after surgery, histopathological examination confirmed the diagnosis of malignant melanoma. Whole spine magnetic resonance images and whole body 18-fluoro-deoxyglucose positron emission tomography could not demonstrate the primary site of this melanoma. Scrupulous physical examination of his skin and mucosa was done and dark pigmented lesion on his left leg was found, but additional studies including magnetic resonance images and skin biopsy showed negative finding. As a result, final diagnosis of primary pineal malignant melanoma was made. He underwent treatment with the whole brain radiotherapy and extended local boost irradiation without chemotherapy. His preoperative symptoms were disappeared, and no other specific neurological deficits were founded. His follow-up image studies showed no recurrence or distant metastasis until 26 weeks after surgery. Primary pineal malignant melanomas are extremely rare intracranial tumors, and only 17 cases have been reported since 1899. The most recent case report showed favorable outcome by subtotal tumor resection followed by whole brain and extended local irradiation without chemotherapy. Our case is another result to prove that total tumor resection with radiotherapy can be the current optimal treatment for primary malignant melanoma in the pineal region.

Key Words: Primary melanoma · Pineal melanoma · Malignant melanoma.
Primary Malignant Melanoma in the Pineal Region | JH Park and YK Hong

resonance imaging (MRI) scans. It contained heterogenous enhancement of central portion. Minimal ventricular dilatation was also suspected. There was no other intracranial lesion identified. On the basis of neuroimaging findings, the initial preoperative differential diagnosis included densely calcified pineal mass such as teratoma, less likely germinoma, and meningioma with dense calcification. Before surgery, he was taken for additional magnetic resonance spectroscopy (MRS) and perfusion MRI. Choline/Creatinine ratio was not elevated in MRS and regional cerebral blood volume was also not elevated in perfusion MRI.

In the operation room, we firstly performed endoscopic third ventriculostomy in the supine position. After tuber cinerium was punctured, the endoscope was removed and extraventricular drainage catheter was placed in the right lateral ventricle. And then we used left occipital transtentorial approach with the patient in the three-quarter prone position. An operated side (left)-down approach was used to minimize occipital lobe retraction. The paramedian linear skin incision was made. Under navigation guide, we performed craniotomy to expose the superior sagittal sinus and transverse sinus with pneumatic saw. The dura was opened with C-shaped flap based on superior sagittal sinus. When the dura was reflected, straight sinus and tentorium were visualized. After opening the tentorium, the quadrigeminal cistern was opened. Basal vein of Rosenthal and black solid tumor was found in the pineal region (Fig. 3). The tumor was adhered to midbrain, meticulous dissection under microscope was done and the mass was removed totally. After 24 hours postoperatively, the patient was taken for MRI, and there was no evidence of remnant tumor nor ventriculomegaly (Fig. 4). His preoperative symptoms were disappeared, and no other specific neurological deficits were found.

Hematoxylin and eosin (HE) staining showed anaplastic spindle-shaped and epithelioid cells with prominent nucleoli and large amounts of melanin pigmentation (Fig. 5). The tumor cells were immunohistochemically positive for HMB45, Melan-A, and S-100 protein. The Ki-67 index was 1%. Histopathological examination confirmed the diagnosis of malignant melanoma.

To differentiate whether this intracranial lesion is primary or metastatic, whole spine magnetic resonance images and whole body 18-fluoro-deoxyglucose positron emission tomography was done. But both studies could not demonstrate the primary site of this melanoma. It showed no relevant lesion. We also did scrupulous physical examination of his skin and mucosa, and dark pigmented lesion on his left leg was found, but additional studies including magnetic resonance images and skin biopsy showed negative finding. This lesion was due to the scratch wound made by bicycle chain 50 years ago. As a result, final diagnosis of primary pineal malignant melanoma was made.

After wound care, to choose adjuvant therapy, we referred to the most recent case report, which Shinsato et al. proposed for the treatment of primary malignant melanoma in the pineal region. We treated with 36 Gy of whole brain radiotherapy and 18 Gy of extended local boost irradiation without chemotherapy. The most recent follow-up image studies showed no recurrence or distant metastasis, which was acquired 26 weeks after surgery.

Fig. 2. Preoperative magnetic resonance imaging. The tumor showed dense hypointense rim on T2 weighted images (A) and FLAIR images (C), which was hyperintense on T1 weighted images (B). It contained heterogenous enhancement of central portion (D).

Fig. 3. Intraoperative photograph (left occipital transtentorial approach) showing basal vein of Rosenthal and black tumor mass in the pineal region after opening the tentorium. The tumor was adhered to midbrain.
And his Karnofsky Performance Scale score was 90.

DISCUSSION

Pineal gland tumors in adults account for about 0.4% to 1% of all intracranial tumors. And these pineal tumors are grouped into four main categories: 1) Germ cell tumors, 2) pineal parenchymal cell tumors, 3) glial cell tumors, and 4) other miscellaneous tumors and cysts. The miscellaneous category includes such entities as meningioma, hemangioblastoma, choroid plexus papilloma, metastatic tumor, adenocarcinoma, and lymphoma. Usually, melanomas are included in the category of metastatic tumor.

Malignant melanoma, which represents only 4% of all cancers, has the highest propensity of all systemic malignant tumors to metastasize to the brain. The incidence of brain metastases among patients with malignant melanoma varies from 6% to 43% in clinical series and from 12% to 90% in autopsy series. In clinical series, based on patients in whom the precise location of a single or a predominant metastasis could be determined, the metastases are distributed as follows: frontal lobes (36.1%), parietal lobes (26.4%), temporal lobes (18.9%), occipital lobes (10.6%), cerebellum (7%), and brainstem (0.9%). Based on our knowledge, metastatic melanomas in the pineal region are rare.

Moreover, primary melanomas of the central nervous system are scarcely found and furthermore, only about 3.6% of these tumors arise in the pineal region. Only 17 cases have been re-
Table 1. Reported cases of primary pineal malignant melanoma detected by magnetic resonance imaging

<table>
<thead>
<tr>
<th>Author (year)</th>
<th>Time to diagnosis (month)</th>
<th>Age/sex</th>
<th>Adjuvant therapy</th>
<th>Symptoms</th>
<th>Signal intensity of T1WI</th>
<th>Signal intensity of T2WI</th>
<th>Survival (weeks)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rubino et al. (1993)</td>
<td>4</td>
<td>60/M</td>
<td>Whole brain</td>
<td>Gait disturbance, lethargy, diplopia, memory impairment</td>
<td>High</td>
<td>Heterogenous</td>
<td>>56</td>
</tr>
<tr>
<td>Mitchell et al. (1998)</td>
<td>3</td>
<td>49/M</td>
<td>Biopsy</td>
<td>Dysarthria, increased ICP signs</td>
<td>High</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Suzuki et al. (2001)</td>
<td>16</td>
<td>50/F</td>
<td>Whole brain</td>
<td>Memory impairment</td>
<td>High</td>
<td>Low</td>
<td>88</td>
</tr>
<tr>
<td>Yamane et al. (2004)</td>
<td>2</td>
<td>53/F</td>
<td>Surgical</td>
<td>Headache, parinaud syndrome</td>
<td>High</td>
<td>Low</td>
<td>>280</td>
</tr>
<tr>
<td>Barron et al. (2007)</td>
<td>NA</td>
<td>73/F</td>
<td>Whole brain</td>
<td>Headache, gait disturbance, diplopia, memory impairment</td>
<td>High</td>
<td>Iso</td>
<td>64</td>
</tr>
<tr>
<td>Bookland et al. (2007)</td>
<td>3</td>
<td>20/F</td>
<td>Whole brain</td>
<td>Headache, amenorrhea</td>
<td>High</td>
<td>Low</td>
<td>>37</td>
</tr>
<tr>
<td>Martin-Blond et al. (2009)</td>
<td>6</td>
<td>44/M</td>
<td>Whole brain</td>
<td>Seizure, gait disturbance, diplopia, memory impairment</td>
<td>High</td>
<td>Iso</td>
<td>52</td>
</tr>
<tr>
<td>Arantes et al. (2011)</td>
<td>16</td>
<td>54/F</td>
<td>Whole brain+ local radiation, temozolomide</td>
<td>Gait disturbance, lethargy, memory impairment</td>
<td>High</td>
<td>Heterogenous</td>
<td>>80</td>
</tr>
<tr>
<td>Shinzato et al. (2012)</td>
<td>4</td>
<td>49/F</td>
<td>Whole brain+ local radiation</td>
<td>Tinnitus, hearing loss</td>
<td>High</td>
<td>Iso+low</td>
<td>>50</td>
</tr>
<tr>
<td>Present case (2014)</td>
<td>5</td>
<td>59/M</td>
<td>Whole brain+ local radiation</td>
<td>Gait disturbance, memory impairment (central: low)</td>
<td>High</td>
<td>Low</td>
<td>>26</td>
</tr>
</tbody>
</table>

T1WI: T1 weighted image of magnetic resonance imaging, T2WI: T2 weighted image of magnetic resonance imaging, ICP: intracranial pressure, NA: not available.
therapy as an adjuvant therapy is controversial. However, recent case reports show that radiotherapy should be performed as mandatory, and chemotherapy as optional for primary malignant melanoma. Barron et al. reported a patient with primary pineal gland melanoma who survived for 56 weeks after receiving only radiotherapy. And Shinsato et al. report a rare case of primary melanoma of the pineal gland with prolonged survival of more than 56 weeks after subtotal tumor resection followed by whole-brain and extended local irradiation without chemotherapy. The present case underwent complete surgical removal without complication and received 36 Gy of whole brain radiotherapy and 18 Gy of extended local boost irradiation without chemotherapy. And the patient had no recurrence until 26 weeks after surgery. So far, this treatment seems to be efficient for this patient (Table 1). Although there are only few cases to prove the outcome of each treatment, we suggest that surgery followed by radiation without chemotherapy can be sufficient and be recognized as the optimal treatment for primary malignant melanoma in the pineal region.

CONCLUSION

We report a rare case of primary malignant melanoma in the pineal region, who underwent complete surgical resection and adjuvant radiotherapy without chemotherapy. A long-term follow-up was needed to determine whether radiotherapy without chemotherapy is sufficient for the treatment of primary pineal malignant melanomas. Although there is only limited results about each treatment, we suggest that surgery followed by radiation without chemotherapy can be sufficient and be recognized as the optimal treatment for primary malignant melanoma in the pineal region.

References