Spinal subarachnoid hemorrhages (SAH) can extend into the intracranial subarachnoid space, but, severe cerebral vasospasm is rare complication of the extension of intracranial SAH from a spinal subarachnoid hematoma. A 67-year-old woman started anticoagulant therapy for unstable angina. The next day, she developed severe back pain and paraplegia. MRI showed intradural and extramedullary low signal intensity at the T2–3, consistent with intradural hematoma. High signal intensity was also noted in the spinal cord from C5 to T4. We removed subarachnoid hematoma compressing the spinal cord. The following day, the patient complained of severe headache. Brain CT revealed SAH around both parietal lobes. Three days later, her consciousness decreased and left hemiplegia also developed. Brain MRI demonstrated multiple cerebral infarctions, mainly in the right posterior cerebral artery territory, left parietal lobe and right watershed area. Conventional cerebral angiography confirmed diffuse severe vasospasm of the cerebral arteries. After intensive care for a month, the patient was transferred to the rehabilitation department. After 6 months, neurologic deterioration improved partially. We speculate that surgeons should anticipate possible delayed neurological complications due to cerebral vasospasm if intracranial SAH is detected after spinal subarachnoid hematoma.

Key Words: Spinal subarachnoid hematoma · Intracranial subarachnoid hemorrhage · Vasospasm · Cerebral infarction.
came soft. Postoperative MRI demonstrated reduced spinal cord edema. The next day, the patient complained of a severe headache and brain CT revealed SAH on both parietal lobes (Fig. 3). For prevention of vasospasm, nimodipine was administered to prevent cerebral vasospasm intravenously. Hypervolemic and hypertensive treatments were not started because of her poor heart function. Nevertheless, her consciousness decreased over time and blurred vision developed with hemiplegia seven days after surgery. Brain CT and MRI revealed multiple cerebral infarctions in the right posterior cerebral artery territory, left parietal lobe and right watershed area (Fig. 4). Conventional cerebral angiography showed diffuse severe vasospasm of the intracranial arteries, which was most prominent in the right middle cerebral artery and temporo-occipital branches. Perfusion defects were also noted in the bilateral parietal, occipital, and temporal lobes on perfusion CT scan (Fig. 5). After one month of intensive care, she was referred to the rehabilitation department. After six months, she displayed partial improvement of right lower extremity motion, cognition and vision. However, there was no improvement of weakness in her left extremities.

DISCUSSION

Spinal hematoma can be classified as epidural, intradural, subarachnoid, or intramedullary. Of these pathologies, SSH is rare and its radiological diagnosis is extremely difficult. In the majority of previous cases, SSH was diagnosed on the basis of surgical or autopsy findings. Domeniccuci et al. found that the identification of the subarachnoidal location of the hematoma, which is surrounded by cerebrospinal fluid (CSF) and separated from the internal dura mater surface, is the only way to diagnose SSH with CT and MRI.

Nevertheless, it is difficult to distinguish SSH from subdural hematoma. In addition, SSH frequently has a disastrous outcome with an overall mortality of 17.4% in patients with surgical intervention. Furthermore, poor general condition and concomitant diseases are responsible for high mortality in patients with SSH. Although extremely rare, simultaneous intracranial SAH and SSH can occur because of the connection of the subarachnoid space. In 1956, Henson and Croft first reported a case of a SSH with blood-stained CSF within the cranium at autopsy. Since then, totally 10 cases of SSH with symptomatic cranial SAH have been reported on the basis of CT finding (Table 1).

The main causes of SSH are lumbar puncture and anticoagulant. In particular, arterial injuries after a lumbar puncture or anticoagulant administration may cause extensive bleeding, which could result in the spreading of hematoma into the intracranial...
Intracranial Extension of Spinal Subarachnoid Hematoma

KH Nam, et al.

subarachnoid space. Although intracranial SAH and SSH could occur independently, the mechanism appears to involve the extension of SSH into the intracranial arachnoid space. Consequently, cerebral symptoms, such as, headache or a decreased consciousness could occur several hours to days after spinal symptoms. In this case, the cerebral symptoms followed the spinal symptom. In addition, there was no any vascular abnormality on cerebral angiography. Additionally, the SAH was dominant on dependent portion of both parieto-occipital lobes with no SAH in basal cistern. Furthermore, the reversal of anticoagulant was performed before spinal operation. Thus, the authors confirmed that the extension of spinal hematoma into intracranial subarachnoid space is the cause of intracranial SAH.

Fisher CT grades of cranial SAH vary from 2 (SAH <1 mm

Fig. 5. A: Conventional cerebral angiogram demonstrating diffuse cerebral arteries vasospasm, predominantly at the right middle cerebral artery. B: CT perfusion image demonstrating perfusion in both occipital and temporal lobes.

Table 1. Summary of the reported cases of symptomatic cranial subarachnoid hemorrhage associated with spinal subarachnoid hematoma

<table>
<thead>
<tr>
<th>Author & year</th>
<th>Age (years)</th>
<th>Sex</th>
<th>Possible causes</th>
<th>Level of SSH</th>
<th>Spinal Sx</th>
<th>Treatment</th>
<th>Cerebral Sx</th>
<th>Vasospasm</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Walsh et al., 1984</td>
<td>78</td>
<td>M</td>
<td>Lumbar puncture, anticoagulant</td>
<td>Lower thoracic</td>
<td>LBP, leg pain</td>
<td>Conservative</td>
<td>Meningeal irritation</td>
<td>Deterioration</td>
<td>No</td>
</tr>
<tr>
<td>Hans et al., 2008</td>
<td>73</td>
<td>M</td>
<td>Lumbar puncture, anticoagulant</td>
<td>L1–S1</td>
<td>LBP, leg pain</td>
<td>Conservative</td>
<td>Stupor</td>
<td>No</td>
<td>Good</td>
</tr>
<tr>
<td>Liu et al., 2008</td>
<td>76</td>
<td>M</td>
<td>Lumbar puncture</td>
<td>Whole spine</td>
<td>Paraplegia</td>
<td>Ventricular drainage, embolization</td>
<td>Deep coma</td>
<td>No</td>
<td>Poor</td>
</tr>
<tr>
<td>Rocchi et al., 2009</td>
<td>69</td>
<td>M</td>
<td>Lumbar puncture</td>
<td>T12–L1</td>
<td>Monoparesis</td>
<td>Conservative</td>
<td>Confusion</td>
<td>No</td>
<td>Good</td>
</tr>
<tr>
<td>Lee et al., 2009</td>
<td>76</td>
<td>M</td>
<td>Lumbar puncture</td>
<td>Above L2</td>
<td>Paraparesis</td>
<td>Ventricular drainage, embolization</td>
<td>Stupor, dilated pupil</td>
<td>No</td>
<td>Good</td>
</tr>
<tr>
<td>Mete et al., 2012</td>
<td>42</td>
<td>M</td>
<td>Anticoagulant</td>
<td>T6–L5</td>
<td>Paraparesis</td>
<td>Conservative</td>
<td>Cardiac arrest</td>
<td>No</td>
<td>Death</td>
</tr>
<tr>
<td>Peñas et al., 2011</td>
<td>74</td>
<td>F</td>
<td>Anticoagulant</td>
<td>C2–T10</td>
<td>Neck pain, paraparesis</td>
<td>Conservative</td>
<td>Meningeal irritation</td>
<td>No</td>
<td>Death</td>
</tr>
<tr>
<td>Espinosa-Aguilar et al., 2012</td>
<td>35</td>
<td>F</td>
<td>Lumbar puncture, vascular malformation</td>
<td>T5–T10</td>
<td>Paraplegia</td>
<td>Decompressive laminectomy</td>
<td>Headache, vomiting, stiff neck</td>
<td>Reversible</td>
<td>Poor</td>
</tr>
<tr>
<td>Present case</td>
<td>67</td>
<td>F</td>
<td>Anticoagulant</td>
<td>C5–T4</td>
<td>Paraplegia</td>
<td>Decompressive laminectomy</td>
<td>Headache, visual defect, stupor</td>
<td>Multiple infarctions</td>
<td>Poor</td>
</tr>
</tbody>
</table>

SSH: spinal subarachnoid hemorrhage, Sx: symptom
though rare, SSH can extend into the intracranial subarachnoid space and cause severe vasospasm. Therefore, spine surgeons should be aware of the possibility of simultaneous intracranial SAH after an intraspinal hemorrhage. They should monitor brain CT findings and neurological status carefully. If intracranial SAH is detected, surgeons should anticipate possible delayed neurological complications due to cerebral vasospasm.

CONCLUSION

We report an extremely rare case of intracranial SAH causing severe vasospasm and cerebral infarction from SSH. This specific case developed after the initiation of anticoagulant therapy. Although rare, SSH can extend into the intracranial subarachnoid space and cause severe vasospasm. Therefore, spine surgeons should be aware of the possibility of simultaneous intracranial SAH after an intraspinal hemorrhage. They should monitor brain CT findings and neurological status carefully. If intracranial SAH is detected, surgeons should anticipate possible delayed neurological complications due to cerebral vasospasm.

References