DOI QR코드

DOI QR Code

Bio-Inspired Synthesis of a Silicate/PMMA Composite

  • Nam, Kyung Mok (Energy Efficient Material Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Yoon Joo (Energy Efficient Material Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Kwon, Woo Teck (Energy Efficient Material Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Soo Ryong (Energy Efficient Material Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Shin, Dong-Geun (Energy Efficient Material Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Lim, Hyung Mi (Eco Composite Materials Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Hyungsun (School of Materials Engineering, Inha University) ;
  • Kim, Younghee (Energy Efficient Material Team, Korea Institute of Ceramic Engineering and Technology)
  • Received : 2013.09.30
  • Accepted : 2014.01.05
  • Published : 2014.01.31

Abstract

Abalone shell is composed of 95 wt% $CaCO_3$ platelets and 5 wt% of a protein-rich organic matrix which acts as an adhesive layer, connecting aragonite tablets, thus maintaining the structural integrity of the composite. By mimicking abalone shell, we prepared a silicate plate/polymer nanocomposite by infiltrating PMMA between silicate layers and warm-pressing them at $200^{\circ}C$ for 1 h under 15 tons to make organic-inorganic composite materials. To examine the organic-inorganic composite materials after the warm-pressing procedure, the composite sample was analyzed with FE-SEM and TG. The bending strengths and densities of the composites prepared by a silicate plate and PMMA after the warm-pressing process were ~140 MPa and 1.5, respectively.

Keywords

References

  1. P. Podsiadlo, Z. Liu, D. Paterson, P. B. Messersmith, and N. A. Kotov, "Fusion of Seashell Nacre and Marine Bioadhesive Analogs: High-Strength Nanocomposite by Layerby-Layer Assembly of Clay and L-3,4-Dihydroxyphenylalanine Polymer," Adv. Mater., 19 [7] 949-55 (2007). https://doi.org/10.1002/adma.200602706
  2. R. M. Erb, R. Libanori, N. Rothfuchs, and A. R. Studart, "Composites Reinforced in Three Dimensions by Using Low Magnetic Fields," Science, 335 [6065] 199-204 (2012). https://doi.org/10.1126/science.1210822
  3. A. M. Belcher, X. H. Wu, R. J. Christensen, P. K. Hansma, G. D. Stucky, and D. E. Morse, "Control of Crystal Phase Switching and Orientation by Soluble Mollusc-shell Proteins," Nature, 381 56-58 (1996). https://doi.org/10.1038/381056a0
  4. M. E. Launey, E. Munch, D. H. Alsem, H. B. Barth, E. Saiz, A. P. Tomsia, and R.O. Ritchie, "Designing Highly Toughened Hybrid Composites Through Nature," Acta Mater., 57 [10] 2919-32 (2009). https://doi.org/10.1016/j.actamat.2009.03.003
  5. E. Munch, M. E. Launey, D. H. Alsem, E. Saiz, A. P. Tomsia, and R. O. Ritchie, "Tough, Bio-Inspired Hybrid Materials," Science, 322 [5907] 1516-20 (2008). https://doi.org/10.1126/science.1164865
  6. L. J. Bonderer, A. R. Studart, and L. J. Gauckler, "Bioinspired Design and Assembly of Platelet Reinforced Polymer Films," Science, 319 [5866] 1069-73 (2008). https://doi.org/10.1126/science.1148726
  7. A. Chandra, L. S. Turng, K. Li, and H. X. Huang, "Fracture Behavior and Optical Properties of Melt Compounded Semitransparent Polycarbonate(PC)/Alumina Nanocomposites," Composites, Part A, 42 [12] 1903-09 (2011). https://doi.org/10.1016/j.compositesa.2011.08.015
  8. S. Zhao, L. S. Schadler, R. Duncan, H. Hillborg, and T. Auletta, "Mechanisms Leading to Improved Mechanical Performance in Nanoscale Alumina Filled Epoxy," Compos. Sci. Technol., 68 [14] 2965-75 (2008). https://doi.org/10.1016/j.compscitech.2008.01.009
  9. H. Liu, H. Ye, T. Lin, and T. Zhou, "Synthesis and Characterization of PMMA/$Al_2O_3$ Composite Particles by in Situ Emulsion Polymerization," Particuology, 6 [3] 207-13 (2008). https://doi.org/10.1016/j.partic.2008.01.003
  10. X. Li, W. C. Chang, Y. J. Chao, R. Wang, and M. Chang "Nanoscale Structural and Mechanical Charaterization of a Natural Nanocomposite Material:the Shell of Red Abalone," Nano Lett., 4 [4] 613-17 (2004). https://doi.org/10.1021/nl049962k
  11. D. Kumar, K. Shukla, S. V. Kasisomayajula, and V. Parameswaran, "Epoxy Composites using Functionalized Alumina Platelets as Reinforcements," Compos. Sci. Technol., 68 [14] 3055-63 (2008). https://doi.org/10.1016/j.compscitech.2008.06.025
  12. F. Bennadji-Gridi, A. Smith, and J.-P. Bonnet, "Montmorillonite Based Artificial Nacre Prepared Via Drying Process," Mater. Sci. Eng. B, 130 [1-3] 132-36 (2006). https://doi.org/10.1016/j.mseb.2006.02.063
  13. Y. L. Liu, C.Y. Hsu, and K. Y. Hsu, "Poly(methylmethacrylate)-silica Nanocomposites Films from Surface-functionalized Silica Nanoparticles," Polymer, 46 [6] 1851-56 (2005). https://doi.org/10.1016/j.polymer.2005.01.009
  14. B. J. Ash, D. F. Rogers, C. J. Wiegand, L. S. Schalder, R. W. Siegel, B. C. Benicewicz, and T. Apple, "Mechanical Properties of $Al_2O_3$/Polymethylmethacrylate Nanocomposites," Polym. Composite., 23 [6] 1014-25 (2002). https://doi.org/10.1002/pc.10497
  15. K. M. Nam, Y. J. Lee, W. T. Kwon, S. R. Kim, H. M. Lim, H. S. Kim, and Y. H. Kim, "Preparation of $Al_2O_3$ Platelet/ PMMA Composite and Its Mechanical/Therml Characterization," J. Kor. Ceram. Soc., 49 [5] 438-41 (2012). https://doi.org/10.4191/kcers.2012.49.5.438

Cited by

  1. Asperities on the Surface of Plate-like Alumina and their Effect on Nacre-inspired Alumina-PMMA Composites vol.52, pp.4, 2015, https://doi.org/10.4191/kcers.2015.52.4.248
  2. Eco‐Degradable and Flexible Solid‐State Ionic Conductors by Clay‐Nanoconfined DMSO Composites vol.4, pp.5, 2014, https://doi.org/10.1002/adsu.201900134