DOI QR코드

DOI QR Code

Electrical and Optical Properties of Sb-doped SnO2 Thin Films Fabricated by Pulsed Laser Deposition

펄스레이저 공정으로 제조한 Sb가 도핑된 SnO2 박막의 전기적 및 광학적 특성

  • Jang, Ki-Sun ;
  • Lee, Jung-Woo (Department of Materials Science & Engineering, Research Institute of Advanced Materials (RIAM), Seoul National University) ;
  • Kim, Joongwon (Department of Materials Science & Engineering, Research Institute of Advanced Materials (RIAM), Seoul National University) ;
  • Yoo, Sang-Im (Department of Materials Science & Engineering, Research Institute of Advanced Materials (RIAM), Seoul National University)
  • 장기선 (삼성 디스플레이 CAE팀) ;
  • 이정우 (서울대학교 공과대학 재료공학부 및 신소재공동연구소) ;
  • 김중원 (서울대학교 공과대학 재료공학부 및 신소재공동연구소) ;
  • 유상임 (서울대학교 공과대학 재료공학부 및 신소재공동연구소)
  • Received : 2013.12.12
  • Accepted : 2014.01.20
  • Published : 2014.01.31

Abstract

We fabricated undoped and Sb-doped $SnO_2$ thin films on glass substrates by a pulsed laser deposition (PLD) process. Undoped and 2 - 8 wt% $Sb_2O_3$-doped $SnO_2$ targets with a high density level of ~90% were prepared by the spark plasma sintering (SPS) process. Initially, the effects of the deposition temperature on undoped $SnO_2$ thin films were investigated in the region of $100-600^{\circ}C$. While the undoped $SnO_2$ film exhibited the lowest resistivity of $1.20{\times}10^{-2}{\Omega}{\cdot}cm$ at $200^{\circ}C$ due to the highest carrier concentration generated by the oxygen vacancies, 2 wt% Sb-doped $SnO_2$ film exhibited the lowest resistivity value of $5.43{\times}10^{-3}{\Omega}{\cdot}cm$, the highest average transmittance of 85.8%, and the highest figure of merit of 1202 ${\Omega}^{-1}{\cdot}cm^{-1}$ at $400^{\circ}C$ among all of the doped films. These results imply that 2 wt% $Sb_2O_3$ is an optimum doping content close to the solubility limit of $Sb^{5+}$ substitution for the $Sb^{4+}$ sites of $SnO_2$.

Keywords

References

  1. K. L. Chopra, S. Major, and K. K. Pandya, "Transparent Conductor," Thin Solid Films, 102 [1] 1-46 (1983). https://doi.org/10.1016/0040-6090(83)90256-0
  2. T. Minami, "Transparent Conducting Oxide Semiconductors for Transparent Electrodes," Semicond. Sci. Technol., 20 [4] 35-44 (2005). https://doi.org/10.1088/0268-1242/20/4/004
  3. T. Minami, "New n-type Transparent Conducting Oxides," MRS Bull., 25 [8] 38-44 (2000).
  4. E. Fortunato, D. Gineley, H. Hosono, and D. C. Paine, "Transparent Conducting Oxides for Photovoltaics," MRS Bull., 32 [32] 242-47 (2007). https://doi.org/10.1557/mrs2007.29
  5. T. J. Coutts, D. L. Young, X. Li, W. P. Mulligan, and X. Wu, "Search for Improved Transparent Conducting Oxides: A Fundamental Investigation of CdO, $Cd_2SnO_4$, and $Zn_2SnO_4$," J. Vac. Sci. Technol. A, 18 [6] 2646-60 (2000).
  6. H. D. Waal and F. Simons, "Tin Oxide Coatings : Physical Properties and Application," Thin Solid Films, 77 [1-3] 253- 58 (1981). https://doi.org/10.1016/0040-6090(81)90380-1
  7. Z. G. Ji, Z. J. He, Y. L. Song, K. Liu, and Y. Xiang, "A Novel Transparent pn+ Junction Based on Indium Tin Oxides," Thin Solid Films, 460 [1-2] 324-26 (2004). https://doi.org/10.1016/j.tsf.2004.02.021
  8. C. Korber, P. Agoston, and A. Klein, "Surface and Bulk Properties of Sputter Deposited Undoped and Sb-doped $SnO_2$ Thin Films," Sens. Actuators, B, 139 [2] 665-72 (2009). https://doi.org/10.1016/j.snb.2009.03.067
  9. P. Nelli, G. Faglia, G. Sberveglieri, E. Cereda, G. Gabetta, A. Dieguez, A. Romano-Rodriguez, and J. R. Morante, "The Aging Effect on $SnO_2$-Au Thin Film Sensors: Electrical and Structural Characterization," Thin Solid Films, 371 [1-2] 249-53 (2000). https://doi.org/10.1016/S0040-6090(00)01011-7
  10. J. Proscia and R. G. Gordon, "Properties of Fluorine-doped Tin Oxide Films Produced by Atmospheric Pressure Chemical Vapor Deposition from Tetramthyltin, Bromotrifluoromethne and Oxygen," Thin Solid Films, 214 [2] 175-87 (1992). https://doi.org/10.1016/0040-6090(92)90767-6
  11. K. Y. Rajpure, M. N. Kusumade, M. N. Neumann-Spallart, and C. H. Bhosale, "Effect of Sb Doping on Properties of Conductive Spray Deposited $SnO_2$ Thin Films," Mater. Chem. Phys., 64 [3] 184-88 (2000). https://doi.org/10.1016/S0254-0584(99)00256-4
  12. S. Shanthi, C. Subramanian, and P. Ramasamy, "Growth and Characterization of Antimony Doped Tin Oxide Thin Films," J. Cryst. Growth, 197 [4] 858-64 (1999). https://doi.org/10.1016/S0022-0248(98)01066-5
  13. Y. H. Wang, J. Ma, J. Feng, X. H. Yu, and H. L. Ma, "Structural and Photoluminescence Characters of $SnO_2$:Sb Films Deposited by RF Magnetron Sputtering," J. Lumin., 114 [1] 71-76 (2005). https://doi.org/10.1016/j.jlumin.2004.12.003
  14. C. Terrier, J. P. Chatelon, and J. A. Roger, "Electrical and Optical Properties of Sb:$SnO_2$ Thin Films Obtained by Solgel Method," Thin Solid Films, 295 [1-2] 95-100 (1997). https://doi.org/10.1016/S0040-6090(96)09324-8
  15. H. Kim and A. Pique, "Transparent Conducting Sb-doped $SnO_2$ Thin Films Grown by Pulsed-laser Deposition," Appl. Phys. Lett., 84 [2] 218-20 (2004). https://doi.org/10.1063/1.1639515
  16. S. Yu, L. Ding, C. Xue, L. Chen, and W. F. Zhang, "Transparent Conducting Sb-doped $SnO_2$ Thin Films Grown by Pulsed Laser Deposition," J. Non-Cryst. Solids, 358 [23] 3137-40 (2012). https://doi.org/10.1016/j.jnoncrysol.2012.09.009
  17. E. R. Leite, J. A. Cerri, E. Longo, J. A. Varela, and C. A. Paskocima, "Sintering of Ultrafine Undoped $SnO_2$ Powder," J. Eur. Ceram. Soc., 21 [5] 669-75 (2001). https://doi.org/10.1016/S0955-2219(00)00250-8
  18. K. S. Jang, "Transparent Conducting Sb-doped $SnO_2$ Thin Films Grown by Pulsed Laser Deposition (in Korean)," Master Thesis, Seoul National University, Seoul, 2010.
  19. P. Scherrer, "Bestimmung der Grosse und der Inneren Struktur von Kolloidteilchen Mittels Rontgenstrahlen (in German)," Nachrichten von der Gesellschaft der Wissenschaften zu Gottingen, Mathematisch-Physikalische Klasse, 2 98-100 (1918).
  20. X. Feng, J. Ma, F. Yang, F. Ji, F. Zong, C. Luan, and H. Ma "Transparent Conducting $SnO_2$ :Sb Epitaxial Films Prepared on ${\alpha}-Al_2O_3$ (0001) by MOCVD," Mater. Lett., 62 [12-13] 1779-81 (2008). https://doi.org/10.1016/j.matlet.2007.10.002
  21. T. P. Rao and M. C. Santhoshkumar, "Effect of Thickness on Structural, Optical and Electrical Properties of Nanostructured ZnO Thin Films by Spray Pyrolysis," Appl. Surf. Sci., 255 [8] 4579-84 (2009). https://doi.org/10.1016/j.apsusc.2008.11.079
  22. S. S. Lin and J. L. Huang, "Effect of Thickness on the Structural and Optical Properties of ZnO Films by r.f. Magnetron Sputtering," Surf. Coat. Tech., 185 [2-3] 222-27 (2004). https://doi.org/10.1016/j.surfcoat.2003.11.014
  23. R. E. I. Schropp and A. Madan, "Properties of Conductive Zinc-oxide Films for Transparent Electrode Applications Prepared by rf Magnetron Sputtering," J. Appl. Phys., 66 [5] 2027-31 (1989). https://doi.org/10.1063/1.344341