DOI QR코드

DOI QR Code

DSSCs Efficiencies of Photo Electrode Thickness and Modified Photo Electrode Surface Area

광전극 두께와 표면적 변형에 따른 DSSC의 효율 특성

  • Kwon, Sung-Yeol (Department of Electrical Engineering, Pukyong National University) ;
  • Yang, Wook (Department of Electrical Engineering, Graduate School Pukyong National University) ;
  • Zhou, Ze-Yuan (Department of Electrical Engineering, Graduate School Pukyong National University)
  • 권성열 (부경대학교 전기공학과) ;
  • 양욱 (부경대학교 대학원 전기공학과) ;
  • 주택원 (부경대학교 대학원 전기공학과)
  • Received : 2013.11.29
  • Accepted : 2014.01.24
  • Published : 2014.02.01

Abstract

Photo electrode is an important component for DSSC. DSSCs electrical characteristics and efficiencies fabricated with different $TiO_2$ photo electrodes thickness and modified phoro electrode surface area were studied. $11{\mu}m$ $TiO_2$ photo electrode shows a 4.956% efficiency. The highest short circuit current density was a $9.949mA/cm^2$. Efficiencies and short circuit current density increased as tape casting thickness decreased. Modified surface area of the photo electrode by needle stamp processing were studied. 200 times needle stamp processing on photo electrodes shows a highest 5.168% efficiency. Also the short circuit current density was a $10.261mA/cm^2$.

Keywords

References

  1. B. O'Regan and M. Gratzel, Nature, 353, 737 (1991). https://doi.org/10.1038/353737a0
  2. L. M. Peter, Phys. Chem. Chem. Phys., 9, 2630 (2007). https://doi.org/10.1039/b617073k
  3. T. W. Hamann, R. A. Jensen, A.B.F. Martinson, H. V. Ryswyk, and J. T. Hupp, Energy & Environmental Sci., 1, 66 (2008). https://doi.org/10.1039/b809672d
  4. Y. Zhang, Y. Shen, F. Gu, M. Wu, Y. Xie, and J. Zhang, Appl. Surf. Sci., 256, 85 (2009). https://doi.org/10.1016/j.apsusc.2009.07.074
  5. T. W. Hamann, R. A. Jensen, A.B.F. Martinson, H. V. Ryswyk, and J. T. Hupp, Energy Environ. Sci., 1, 66 (2008). https://doi.org/10.1039/b809672d
  6. S. Y. Kwon, W. Yang, and Z. Y. Zhou, J. KIEEME, 26, 3 (2013).
  7. Y. Zhang, J. Zhang, P. Wang, G. Yang, Q. Sun, J. Zheng, and Y. Zhu, Phys. Chem. Chem. Phys., 123, 595 (2010).
  8. H. G. Jung, Y. S. Kang, Y. K. Sun, Electrochimica Acta. 55, 4637 (2010). https://doi.org/10.1016/j.electacta.2010.03.031
  9. S. Ito and M. Gratzel, Thin Solid Films, 516, 4613 (2008). https://doi.org/10.1016/j.tsf.2007.05.090
  10. H. J. Koo and N. G. Park, Inorg. Chim. Acta., 361, 667 (2008).
  11. X. G Zhao, E. M. Jin, and H. B. Gu, J. KIEEME, 24, 427 (2011).
  12. S. Y. Kwon, W. Yang, and Z. Y. Zhou, J. KIEEME, 25, 7 (2012).
  13. B. Munkhbayar, S. H. Huang, J. H. Kim, K. Y. Bae, M. K. Ji, H. S. Chang, and H. M. Jeong, Electorchimica Acta, 80, 1 (2012). https://doi.org/10.1016/j.electacta.2012.05.162
  14. X. Z. Liu, Z. Huang, K. X. Li, H. Li, D. M. Li, L. Q. Chen, and Q. B. Meng, Chinese Phys. Lett., 23 2606 (2006). https://doi.org/10.1088/0256-307X/23/9/071
  15. H. Chang, C. H. Chen, M. J. Kao, S. H. Chien, and C. Y. Chou, Appl. Surf. Sci., 275, 15 (2013).
  16. K. S. Hwang and K. P. Ha, Appl. Chem. Eng., 21, 405 (2010).
  17. S. Nakade, M. Matsuda, S. Kambe, Y. Saito, T. Kitamura, T. Sakata, Y. Wada, H. Mori, and S. Yanagida, J. Phys. Chem. B, 106, 10004 (2002). https://doi.org/10.1021/jp020051d
  18. Y. Lee and M. Kang, Mat. Chem. Phys., 122, 1 (2010). https://doi.org/10.1016/j.matchemphys.2010.02.063
  19. V. Dhasa, S. Mudulia, S. Agarkara, A. Ranaa, B. Hannoyerb, R. Banerjeea, and S. Ogale, Sol. Energy, 85, 6 (2011).