DOI QR코드

DOI QR Code

A healthy delivery of twins by assisted reproduction followed by preimplantation genetic screening in a woman with X-linked dominant incontinentia pigmenti

  • Kim, Myung Joo (Department of Obstetrics and Gynecology, Fertility Center of CHA Gangnam Medical Center, CHA University College of Medicine) ;
  • Lyu, Sang Woo (Department of Obstetrics and Gynecology, Fertility Center of CHA Gangnam Medical Center, CHA University College of Medicine) ;
  • Seok, Hyun Ha (Department of Obstetrics and Gynecology, Fertility Center of CHA Gangnam Medical Center, CHA University College of Medicine) ;
  • Park, Ji Eun (Genetics Laboratory, Fertility Center of CHA Gangnam Medical Center, CHA University College of Medicine) ;
  • Shim, Sung Han (Genetics Laboratory, Fertility Center of CHA Gangnam Medical Center, CHA University College of Medicine) ;
  • Yoon, Tae Ki (Department of Obstetrics and Gynecology, Fertility Center of CHA Gangnam Medical Center, CHA University College of Medicine)
  • Received : 2014.10.25
  • Accepted : 2014.12.04
  • Published : 2014.12.31

Abstract

The purpose of this study is to report a successful twin pregnancy and delivery in a female patient with X-linked dominant incontinentia pigmenti (IP) who underwent assisted reproductive technology followed by preimplantation genetic screening (PGS). A 29-year-old female with IP had a previous history of recurrent spontaneous abortion. A molecular analysis revealed the patient had a de novo mutation, 1308_1309insCCCCTTG(p.Ala438ProfsTer26), in the inhibitor of the kappa B kinase gamma gene located in the Xq28 region. IVF/ICSI and PGS was performed, in which male embryos were sexed using array-based comparative genomic hybridization (aCGH). After IVF/ICSI and PGS using aCGH on seven embryos, two euploid male blastocysts were transferred with a 50% probability of a viable male pregnancy. The dizygotic twin pregnancy was confirmed and the amniocentesis results of each twin were normal with regard to the mutation found in the mother. The patient delivered healthy twin babies during the 37th week of gestation. This case shows the beneficial role of PGS in achieving a successful pregnancy through euploid male embryo gender selection in a woman with X-linked dominant IP with a history of multiple male miscarriages.

Keywords

References

  1. Hadj-Rabia S, Rimella A, Smahi A, Fraitag S, Hamel-Teillac D, Bonnefont JP, et al. Clinical and histologic features of incontinentia pigmenti in adults with nuclear factor-kappaB essential modulator gene mutations. J Am Acad Dermatol 2011;64:508-15. https://doi.org/10.1016/j.jaad.2010.01.045
  2. Speeckaert R, Van Gele M, Speeckaert MM, Lambert J, van Geel N. The biology of hyperpigmentation syndromes. Pigment Cell Melanoma Res 2014;27:512-24. https://doi.org/10.1111/pcmr.12235
  3. Smahi A, Courtois G, Vabres P, Yamaoka S, Heuertz S, Munnich A, et al. Genomic rearrangement in NEMO impairs NF-kappaB activation and is a cause of incontinentia pigmenti. The International Incontinentia Pigmenti (IP) Consortium. Nature 2000;405:466-72. https://doi.org/10.1038/35013114
  4. Fusco F, Pescatore A, Bal E, Ghoul A, Paciolla M, Lioi MB, et al. Alterations of the IKBKG locus and diseases: an update and a report of 13 novel mutations. Hum Mutat 2008;29:595-604. https://doi.org/10.1002/humu.20739
  5. Fusco F, Pescatore A, Steffann J, Royer G, Bonnefont JP, Ursini MV. Clinical Utility Gene Card for: incontinentia pigmenti. Eur J Hum Genet. 2013;21. doi: 10.1038/ejhg.2012.227.
  6. Munne S, Alonso ML, Grifo J. Case report: unusually high rates of aneuploid embryos in a 28-year old woman with incontinentia pigmenti. Cytogenet Cell Genet 1996;72:43-5. https://doi.org/10.1159/000134158
  7. McGrath JA, Handyside AH. Preimplantation genetic diagnosis of severe inherited skin diseases. Exp Dermatol 1998;7:65-72. https://doi.org/10.1111/j.1600-0625.1998.tb00305.x
  8. Pettigrew R, Kuo HC, Scriven P, Rowell P, Pal K, Handyside A, et al. A pregnancy following PGD for X-linked dominant [correction of X-linked autosomal dominant] incontinentia pigmenti (Bloch-Sulzberger syndrome): case report. Hum Reprod 2000;15:2650-2. https://doi.org/10.1093/humrep/15.12.2650
  9. Griesinger G, Bundgen N, Salmen D, Schwinger E, Gillessen-Kaesbach G, Diedrich K. Polar body biopsy in the diagnosis of monogenic diseases: the birth of three healthy children. Dtsch Arztebl Int 2009;106:533-8.
  10. Altarescu G, Eldar-Geva T, Varshower I, Brooks B, Haran EZ, Margalioth EJ, et al. Real-time reverse linkage using polar body analysis for preimplantation genetic diagnosis in female carriers of de novo mutations. Hum Reprod 2009;24:3225-9. https://doi.org/10.1093/humrep/dep293
  11. Landy SJ, Donnai D. Incontinentia pigmenti (Bloch-Sulzberger syndrome). J Med Genet 1993;30:53-9. https://doi.org/10.1136/jmg.30.1.53
  12. Nelson DL. NEMO, NFkappaB signaling and incontinentia pigmenti. Curr Opin Genet Dev 2006;16:282-8. https://doi.org/10.1016/j.gde.2006.04.013
  13. Fryssira H, Kakourou T, Valari M, Stefanaki K, Amenta S, Kanavakis E. Incontinentia pigmenti revisited. A novel nonsense mutation of the IKBKG gene. Acta Paediatr 2011;100:128-33. https://doi.org/10.1111/j.1651-2227.2010.01921.x
  14. Orphanet report series. Prevalence of rare diseases: bibliographic data [Internet]. Paris: Orphanet; 2014 [cited 2014 Sep 1]. Available from:// http://www.orpha.net/orphacom/cahiers/docs/GB/Prevalence_of_rare_diseases_by_alphabetical_list.pdf.
  15. Ardelean D, Pope E. Incontinentia pigmenti in boys: a series and review of the literature. Pediatr Dermatol 2006;23:523-7. https://doi.org/10.1111/j.1525-1470.2006.00302.x
  16. Kenwrick S, Woffendin H, Jakins T, Shuttleworth SG, Mayer E, Greenhalgh L, et al. Survival of male patients with incontinentia pigmenti carrying a lethal mutation can be explained by somatic mosaicism or Klinefelter syndrome. Am J Hum Genet 2001;69:1210-7. https://doi.org/10.1086/324591
  17. Buinauskaite E, Buinauskiene J, Kucinskiene V, Strazdiene D, Valiukeviciene S. Incontinentia pigmenti in a male infant with Klinefelter syndrome: a case report and review of the literature. Pediatr Dermatol 2010;27:492-5. https://doi.org/10.1111/j.1525-1470.2010.01261.x
  18. Berlin AL, Paller AS, Chan LS. Incontinentia pigmenti: a review and update on the molecular basis of pathophysiology. J Am Acad Dermatol 2002;47:169-87. https://doi.org/10.1067/mjd.2002.125949
  19. Minic S, Trpinac D, Obradovic M. Incontinentia pigmenti diagnostic criteria update. Clin Genet 2014;85:536-42. https://doi.org/10.1111/cge.12223
  20. Fusco F, Paciolla M, Napolitano F, Pescatore A, D'Addario I, Bal E, et al. Genomic architecture at the Incontinentia Pigmenti locus favours de novo pathological alleles through different mechanisms. Hum Mol Genet 2012;21:1260-71. https://doi.org/10.1093/hmg/ddr556
  21. Conte MI, Pescatore A, Paciolla M, Esposito E, Miano MG, Lioi MB, et al. Insight into IKBKG/NEMO locus: report of new mutations and complex genomic rearrangements leading to incontinentia pigmenti disease. Hum Mutat 2014;35:165-77. https://doi.org/10.1002/humu.22483
  22. Gigarel N, Frydman N, Burlet P, Kerbrat V, Steffann J, Frydman R, et al. Single cell co-amplification of polymorphic markers for the indirect preimplantation genetic diagnosis of hemophilia A, Xlinked adrenoleukodystrophy, X-linked hydrocephalus and incontinentia pigmenti loci on Xq28. Hum Genet 2004;114:298-305. https://doi.org/10.1007/s00439-003-1063-9
  23. Rechitsky S, Pomerantseva E, Pakhalchuk T, Pauling D, Verlinsky O, Kuliev A. First systematic experience of preimplantation genetic diagnosis for de-novo mutations. Reprod Biomed Online 2011;22:350-61. https://doi.org/10.1016/j.rbmo.2011.01.005
  24. Munne S, Cohen J. Chromosome abnormalities in human embryos. Hum Reprod Update 1998;4:842-55. https://doi.org/10.1093/humupd/4.6.842
  25. Mertzanidou A, Wilton L, Cheng J, Spits C, Vanneste E, Moreau Y, et al. Microarray analysis reveals abnormal chromosomal complements in over 70% of 14 normally developing human embryos. Hum Reprod 2013;28:256-64. https://doi.org/10.1093/humrep/des362
  26. Munne S, Chen S, Colls P, Garrisi J, Zheng X, Cekleniak N, et al. Maternal age, morphology, development and chromosome abnormalities in over 6000 cleavage-stage embryos. Reprod Biomed Online 2007;14:628-34. https://doi.org/10.1016/S1472-6483(10)61057-7
  27. Martin J, Cervero A, Mir P, Martinez-Conejero JA, Pellicer A, Simon C. The impact of next-generation sequencing technology on preimplantation genetic diagnosis and screening. Fertil Steril 2013;99:1054-61.e3. https://doi.org/10.1016/j.fertnstert.2013.02.001
  28. Fiorentino F, Biricik A, Bono S, Spizzichino L, Cotroneo E, Cottone G, et al. Development and validation of a next-generation sequencing-based protocol for 24-chromosome aneuploidy screening of embryos. Fertil Steril 2014;101:1375-82. https://doi.org/10.1016/j.fertnstert.2014.01.051
  29. Treff NR, Fedick A, Tao X, Devkota B, Taylor D, Scott RT Jr. Evaluation of targeted next-generation sequencing-based preimplantation genetic diagnosis of monogenic disease. Fertil Steril 2013;99:1377-84.e6. https://doi.org/10.1016/j.fertnstert.2012.12.018