Cure Kinetics of Self-Extinguishing Epoxy Resin Systems with Charge Transfer Complex Type Latent Catalyst for Semiconductor Encapsulation

전하전이착체형 잠재성 촉매를 사용한 반도체 성형용 자소성 에폭시 수지 시스템의 경화 반응속도 연구

  • Kim, Whan Gun (Department of Chemical & Biological Engineering, Seokyeong University)
  • 김환건 (서경대학교 화학생명공학과)
  • Received : 2014.11.24
  • Accepted : 2014.12.22
  • Published : 2014.12.31

Abstract

The cure properties of self-extinguishing epoxy resin systems with different charge transfer type latent catalysts were investigated, which are composed of YX4000H as a biphenyl epoxy resin, MEH-7800SS as a hardener, and charge transfer type latent catalysts. We designed and used five kinds of charge transfer type latent catalyst and compared to epoxy resin systems with Triphenylphosphine-Benzoquinone(TPP-BQ) as reference system. The cure kinetics of these systems were analyzed by differential scanning calorimetry with an isothermal approach, the kinetic parameters of all systems were reported in generalized kinetic equations with diffusion effects. The epoxy resin systems with Triphenylphosphine-Quinhydrone(TPP-QH), Triphenylphosphine-Benzanthrone(TPP-BT) and Triphenylphosphine-Anthrone(TPP-AT) as a charge transfer type latent catalyst showed a cure conversion rate of equal or higher rate than those with TPP-BQ. These systems with TPP-QH and Triphenylphosphine-Tetracyanoethylene(TPP-TCE) showed a critical cure reaction conversion of equal or higher conversion than those with TPP-BQ. The increases of cure conversion rates could be explained by the decrease of the activation energy of these epoxy resin systems. It can be considered that the increases of critical cure reaction conversion would be dependent on the crystallinity of the biphenyl epoxy resin systems.

Keywords

References

  1. Kim, W.G., J. Applied Polymer Science, Vol. 113, pp. 408-417, 2009. https://doi.org/10.1002/app.29963
  2. Iji, M., and Kiuchi, Y., J. Material Science; Material Electron, Vol. 12, pp.715-722, 2001 https://doi.org/10.1023/A:1012940826406
  3. Kiuchi, Y., Iji, M., Nagashima, H., and Miwa, T., J. Applied Polymer Science, Vol. 101, pp.3367-3372, 2006. https://doi.org/10.1002/app.24032
  4. Kim, W.G., Yoon H.G., and Lee, J.Y., J. Applied Polymer Science, Vol. 81, pp.2711-2720, 2001. https://doi.org/10.1002/app.1717
  5. Han, S., Kim, W.G., Yoon, H.G., and Moon, T.J., J. Polymer. Science: Part A: Polymer Chemistry, Vol. 36, pp.773-783, 1998. https://doi.org/10.1002/(SICI)1099-0518(19980415)36:5<773::AID-POLA10>3.0.CO;2-D
  6. Han, S., Yoon, H.G., Suh, G.S., Kim, W.G., and Moon, T.J., J. Polymer. Science: Part A:Polymer. Chemistry, Vol. 37, pp.713-720, 1999. https://doi.org/10.1002/(SICI)1099-0518(19990315)37:6<713::AID-POLA6>3.0.CO;2-I
  7. Farren, C., Akatsuka, M., Takezawa, Y., and Itoh, Y., Polymer, Vol. 42, pp.1507-1511, 2001. https://doi.org/10.1016/S0032-3861(00)00499-7
  8. Kim, W.G., and Lee, J.Y., J. Applied Polymer Science, Vol. 86, pp.1942-1952, 2002. https://doi.org/10.1002/app.11104
  9. Law, J.H.W., and Crivello, J.V., J. Polymer Science: Part A: Polymer Chemistry, Vol. 34, pp.3231-3240, 1996. https://doi.org/10.1002/pola.1996.873
  10. Uno, H., Takata, T., and Endo, T., J. Polymer Science: Part A: Polymer Chemistry, Vol. 27, pp.1675-1683, 1991.
  11. Hamerton, I., Howlin, B. J., Jones, J. R., Liu, S., and Barton, J.M., J. Material Chemistry, Vol. 6, pp. 30-37, 1996.
  12. Buist, G.J., Hamerton, I., Howlin, B.J., Jones, J.R., Liu, S., and Barton, J.M., J. Material Chemistry, Vol. 4, pp.1793-1831, 1994. https://doi.org/10.1039/jm9940401793
  13. Ryu, J.H., Choi, K.S., and W.G. Kim, J. Applied Polymer Science, Vol.96, pp.2287-2299, 2005. https://doi.org/10.1002/app.21001
  14. Kim, W.G., and Chun, H., Molecular Crystals and Liquid Crystals, Vol.579, pp.39-49, 2013. https://doi.org/10.1080/15421406.2013.805071
  15. Kim, W.G., and Lee, J.Y., Polymer, Vol.43, pp.5713-5722, 2002. https://doi.org/10.1016/S0032-3861(02)00444-5
  16. Kim, W.G., and Lee, J. Applied Polymer Science, Vol. 92, pp.43-52, 2004. https://doi.org/10.1002/app.13635
  17. Prime, R.B., "Thermal Characteristic of Polymer Materials", Academic Press Inc., New York, USA. 1981.
  18. Kim, W.G., J. Institute of Industrial Technology, Vol. 30, pp.11-19, 2013.