Structural and Electrical Properties of Aluminum Doped ZnO Electrodes Prepared by Atomic Layer Deposition for Application in Organic Solar Cells

유기태양전지 응용을 위한 원자층 증착 방식 제작의 알루미늄이 도핑 된 ZnO의 전기적, 구조적 특징

  • Seo, Injun (Department of Electronics engineering, Dankook University) ;
  • Ryu, Sang Ouk (Department of Electronics engineering, Dankook University)
  • 서인준 (단국대학교 전자공학과) ;
  • 류상욱 (단국대학교 전자공학과)
  • Received : 2014.04.10
  • Accepted : 2014.06.20
  • Published : 2014.06.30

Abstract

Transparent and conducting aluminum-doped ZnO electrodes were fabricated by atomic layer deposition methods. The electrode showed the lowest resistivity of $5.73{\times}10^{-4}{\Omega}cm$ at a 2.5% cyclic layer deposition ratio of Trimethyl-aluminum and Diethyl-zinc chemicals. The electrodes showed minimum resistivity when deposited at a temperature of $225^{\circ}C$. The electrode also showed optical transmittance of about 92% at 300 nm. An organic solar cell made with a 300-nm-thick aluminum-doped ZnO electrode exhibited 2.0% power conversion efficiency.

Keywords

References

  1. M. Bjerring, J.S. Nielsen, A. Siu, N.C. Nielsen, F.C. Krebs, Sol. Energy Mater. Sol. Cells. 92 (2008) 772. https://doi.org/10.1016/j.solmat.2007.11.008
  2. C.J. Brabec. S. Gowrisanker, J.J. M. Halls, D. Laird, S. Jia, and S.P. Williams, Adv. Mater. 22 (2010) 3839. https://doi.org/10.1002/adma.200903697
  3. E. Bundgaard, and F.C. Krebs, Sol. Energy Mater. Sol. Cells. 91 (2007) 954. https://doi.org/10.1016/j.solmat.2007.01.015
  4. F.C. Krebs, M. Jorgensen, K.Norrman, O. Hagemann, J. Alstrup, T.D. Nielsen, J. Fyenbo, K. Larsen, J. Kristensen, . Sol. Energy Mater. Sol. Cells. 93 (2009) 422. https://doi.org/10.1016/j.solmat.2008.12.001
  5. X. Wang, L. Zhi, N. Tsao, Z Tomovic, J. Li, K. Mullen, Angew. Chem. Int. Ed. 47 (2008) 2990. https://doi.org/10.1002/anie.200704909
  6. A. Klein, C. Korber, A. Wachau, F. Sauberlich, Y. Gassenbauer, R. Schafranek, S.P. Harvey, and T.O. Mason, Thin solid film 518 (2009) 1197. https://doi.org/10.1016/j.tsf.2009.05.057
  7. A.A. Dakhel, Mater. Chem. Phys 130 (2011) 398. https://doi.org/10.1016/j.matchemphys.2011.06.060
  8. A.L. Briseno, T.W. Holcombe, A.I. Boukai, E.C. Garnett, S.W. Shelton, J.J.M. Frechet, P. Yang, Nano Lett. 10 (2010) 334. https://doi.org/10.1021/nl9036752
  9. T. Dhakal, A.S. Nandur, R. Chrisrian, P. Vasekar, S. Desu, C. Westgate, D.I. Koukis, D.J. Arenas and D.B. Tanner, Solar Energy 86 (2012) 1306-1312. https://doi.org/10.1016/j.solener.2012.01.022
  10. F. Wang, M.Z. Wu, Y.Y. Wang, T.M. Yu, X.M. Wu, L.J. Zhuge, Vacuum 89 (2013) 127-131. https://doi.org/10.1016/j.vacuum.2012.02.040
  11. D.J. Lee, H.M. Kim, J.Y. Kwon, H. Choi, S.H. Kim, K.B. Kim, Adv. Funct. Mater. 21 (2011) 448. https://doi.org/10.1002/adfm.201001342
  12. B. Y. Oh, J. H. Kim, J. W. Han, D. S. Seo, H. S. Jang, H. J. Choi, S. H. Baek, J. H. Kim, G. S. Heo, T. W. Kim, K. Y. Kim, Cur. Appl. Phys 12 (2012) 273-279. https://doi.org/10.1016/j.cap.2011.06.017
  13. Y.G. Song, N.J. Seong, K.J. Choi, S.O. Ryu, Thin Solid Films, in press.