DOI QR코드

DOI QR Code

Development of Quality Assurance Software for $PRESAGE^{REU}$ Gel Dosimetry

$PRESAGE^{REU}$ 겔 선량계의 분석 및 정도 관리 도구 개발

  • Cho, Woong (Department of Radiation Oncology, Boramae Hospital) ;
  • Lee, Jaegi (Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies. Graduate School of Convergence Science and Technology, Seoul National University) ;
  • Kim, Hyun Suk (Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies. Graduate School of Convergence Science and Technology, Seoul National University) ;
  • Wu, Hong-Gyun (Department of Radiation Oncology, Seoul National University Hospital)
  • 조웅 (서울특별시 보라매병원 방사선종양학과) ;
  • 이재기 (서울대학교 융합과학기술대학원 융합과학부 방사선융합의생명전공 과정) ;
  • 김현석 (서울대학교 융합과학기술대학원 융합과학부 방사선융합의생명전공 과정) ;
  • 우홍균 (서울대학교병원 방사선종양학과)
  • Received : 2014.09.23
  • Accepted : 2014.10.27
  • Published : 2014.12.30

Abstract

The aim of this study is to develop a new software tool for 3D dose verification using $PRESAGE^{REU}$ Gel dosimeter. The tool included following functions: importing 3D doses from treatment planning systems (TPS), importing 3D optical density (OD), converting ODs to doses, 3D registration between two volumetric data by translational and rotational transformations, and evaluation with 3D gamma index. To acquire correlation between ODs and doses, CT images of a $PRESAGE^{REU}$ Gel with cylindrical shape was acquired, and a volumetric modulated arc therapy (VMAT) plan was designed to give radiation doses from 1 Gy to 6 Gy to six disk-shaped virtual targets along z-axis. After the VMAT plan was delivered to the targets, 3D OD data were reconstructed from 512 projection data from $Vista^{TM}$ optical CT scanner (Modus Medical Devices Inc, Canada) per every 2 hours after irradiation. A curve for converting ODs to doses was derived by comparing TPS dose profile to OD profile along z-axis, and the 3D OD data were converted to the absorbed doses using the curve. Supra-linearity was observed between doses and ODs, and the ODs were decayed about 60% per 24 hours depending on their magnitudes. Measured doses from the $PRESAGE^{REU}$ Gel were well agreed with the TPS doses at central region, but large under-doses were observed at peripheral region at the cylindrical geometry. Gamma passing rate for 3D doses was 70.36% under the gamma criteria of 3% of dose difference and 3 mm of distance to agreement. The low passing rate was resulted from the mismatching of the refractive index between the PRESAGE gel and oil bath in the optical CT scanner. In conclusion, the developed software was useful for 3D dose verification from PRESAGE gel dosimetry, but further improvement of the Gel dosimetry system were required.

본 연구에서는 $PRESAGE^{REU}$ 겔을 이용하여 방사선 치료계획 시 3차원 흡수선량 분포 검증을 위한 정도 관리 소프트웨어를 개발하여 겔을 이용한 3차원 선량분석 방법을 제시하고자 한다. 우선 치료계획상의 3차원 흡수선량 데이터와 측정한 겔 광학밀도 데이터의 입출력 기능을 구현하였고, 변환 테이블을 이용하여 광학밀도를 흡수선량으로 변환하는 기능을 구현하였다. 겔에서 측정된 흡수선량과 치료계획상의 흡수선량 분포간의 기하학적 매칭을 위하여 3D 볼륨 데이터의 x, y, z 방향 및 회전 변환을 구현하였다. 매칭이 완료된 두 선량 분포간에 일치도를 검증하기 위하여 3차원 감마 인덱스알고리듬을 구현하였고, 감마 통과 지도(gamma passing map) 기반의 일치도 확인 기능을 구현하였다. 광학밀도와 흡수선량간의 관계를 분석하기 위하여 원기둥 형태의 $PRESAGE^{REU}$ 겔을 대상으로 X-선 전산화 단층촬영기를 이용하여 CT 영상을 획득하였고, 방사선 치료계획 시스템(Eclipse, Varian, Palo Alto)을 이용하여 원반 형태의 6개의 가상 표적을 생성하여, 각각에 1 Gy에서 6 Gy까지 선량이 전달되도록 입체조형 방사선 치료계획을 수립하였다. 다음으로 광학 CT 스캐너($Vista^{TM}$, Modus Medical Devices Inc, Canada)를 이용하여 기준 투영 영상들을 획득하였고, 치료계획과 동일하게 겔에 방사선을 조사하였다. 조사2시간 후 매 2시간 간격으로 광학 CT 스캐너로 투영 영상 셋을 획득 후 3차원 광학밀도 데이터로 재구성하였다. 실린더 중심축을 따라 치료계획상의 흡수선량 프로파일과 광학밀도 프로파일을 추출하여 광학선량 대비 흡수선량 대응 테이블을 정의하였다. 이후 본 연구에서 개발한 소프트웨어를 이용하여 3차원상의 선량 분포의 일치도를 평가하였다. 광학밀도와 흡수선량간에는 supra-linear 관계가 나타났으며, 광학밀도는 그 크기에 따라 24시간당 60% 전후로 감쇄하였다. 측정된 흡수선량은 중심축 부근에서는 치료계획 선량과 잘 일치하였으나, 주변부로 갈수록 크게 낮아짐을 확인할 수 있었으며, 이로 인하여 3D 감마 통과율은 선량 차이율과 DtoA 각각 3%/3 mm의 조건하에 70.36%로 낮게 나타났다. 이러한 결과는 광학 CT 스캐너 내부의 오일과 $PRESAGE^{REU}$ 겔간의 굴절률이 정확하게 매칭되지 않아서 광학 스캔 시 빔이 굴절되어 부정확한 데이터를 만들어 내는 것으로 분석되었다. 본 연구에서 개발한 정도 관리소프트웨어는 3차원 겔 선량을 비교 분석하기에 유효한 것으로 평가되었으나, $PRESAGE^{REU}$ 겔로부터 정확한 흡수선량데이터를 획득하기 위해 겔 선량측정 과정의 많은 개선이 요구된다.

Keywords

References

  1. Fraass B, Doppke K, Hunt M, et al: American Association of Physicists in Medicine Radiation Therapy Committee Task Group 53: Quality assurance for clinical radiotherapy treatment planning. Med. Phys. 25(10):1773-1829 (1998) https://doi.org/10.1118/1.598373
  2. Schreibmann E, Dhabaan A, Elder E, Fox T: Patientspecific quality assurance method for VMAT treatment delivery. Med. Phys. 36(10):4530-4535 (2009) https://doi.org/10.1118/1.3213085
  3. Zhen H, Benjamin EN, Wolfgang A, Tome: Moving from gamma passing rates to patient DVH-based QA metrics in pretreatment dose QA. Med. Phys. 38 (10):5477-5489 (2011) https://doi.org/10.1118/1.3633904
  4. Benjamin EN, Zhen H, Wolfgang A, Tome: Per-beam, planar IMRT QA passing rates do not predict clinically relevant patient dose errors. Med. Phys. 38 (2): 1037-1044 (2011) https://doi.org/10.1118/1.3544657
  5. Wu C, Kelly E. Hosier, Kristen E. Beck, et al: On using 3D ${\gamma}$-analysis for IMRT and VMAT pretreatment plan QA. Med. Phys. 39 (6):3051-3059 (2012) https://doi.org/10.1118/1.4711755
  6. Carrasco P, Jornet N, Latorre A, Eudaldo T, Ruiz A, Ribas M: 3D DVH-based metric analysis versus per-beam planar analysis in IMRT pretreatment verification. Med. Phys. 39 (8): 5040-5049 (2012) https://doi.org/10.1118/1.4736949
  7. Visser R, Wauben DJL, Groot M, et al: Efficient and reliable 3D dose quality assurance for IMRT by combining independent dose calculations with measurements. Med. Phys. 40 (2): 021710-1-6 (2013) https://doi.org/10.1118/1.4774048
  8. Fredh A, Scherman JB, Fog LS, Rosenschold PM: Patient QA systems for rotational radiation therapy: A comparative experimental study with intentional errors. Med. Phys. 40:031716 (2013) https://doi.org/10.1118/1.4788645
  9. Juang T, Newton J, Niebanck M, Benning R, Adamovics J, Oldham M: Customising PRESAGE(R) for diverse applications. Journal of Physics: Conference Series, 444:1-5 (2013)
  10. Qian X, Adamovics J, Wuu C: Performance of an improved first generation optical CT scanner for 3D dosimetry. Phys. Med. Biol. 58: N321-N331 (2013) https://doi.org/10.1088/0031-9155/58/24/N321
  11. Juang T, Grant R, Adamovics J, Ibbott G, Oldham M: On the feasibility of comprehensive high-resolution 3D remote dosimetry. Med. Phys. ,41 (7): 071706-1-11 (2014) https://doi.org/10.1118/1.4884018
  12. Cho SJ, Chung YL, Lee SH, et al: A Study of Optimized MRI Parameters for Polymer Gel Dosimetry, Korean J Med Phys 23(2):71-80 (2012)
  13. Jang JS, Kwon SI: 3-Dimensional Dosimetry of Small Field Photon Beam, Korean J Med Phys 23(1): 54-61 (2012)
  14. Lee KN, Lee DJ, Suh TS: 3-Dimensional Verification Technique for Target Point Error, Korean J Med Phys 22(1): 35-41 (2011)
  15. Jung JY, Lee CI, Min JH, Kim YL, Lee SY, Suh TS: A Study on Dose Response of MAGAT (Methacrylic Acid, Gelatin Gel and THPC) Polymer Gel Dosimeter Using X-ray CT Scanner. Korean J Med Phys 21(1): 1-8 (2010)
  16. Lopatiuk-Tirpak O, Langen KM, Meeks SL, Kupelian PA, Zeidan OA, Maryanski MJ: Performance evaluation of an improved optical computed tomography polymer gel dosimeter system for 3D dose verification of static and dynamic phantom deliveries, Med. Phys. 35 (9): 3847-3859 (2008) https://doi.org/10.1118/1.2960219
  17. Jirasek A: Experimental investigations of polymer gel dosimeters, Journal of Physics: Conference Series 56: 23-34 (2006) https://doi.org/10.1088/1742-6596/56/1/003
  18. Jordan K: Review of recent advances in radiochromic materials for 3D dosimetry, Journal of Physics: Conference Series 250: 1-7 (2010)
  19. Pierquet M, Thomas A, Adamovics J, Oldham M: An investigation into a new re-useable 3D radiochromic dosimetry material, PresageREU, Journal of Physics: Conference Series 250: 1-4 (2010)
  20. Adamovics J, Maryanski MJ: CHARACTERISATION OF PRESAGETM: A NEW 3-D RADIOCHROMIC SOLID POLYMER DOSEMETER FOR IONISING RADIATION, Radiation Protection Dosimetry, 120(1-4): 107-112, (2006) https://doi.org/10.1093/rpd/nci555
  21. Doran SJ, Krstajic N, Adamovics J, Jenneson PM: Optical CT scanning of PRESAGETM polyurethane samples with a CCD-based readout system, Journal of Physics: Conference Series 3: 240-243 (2004) https://doi.org/10.1088/1742-6596/3/1/037