DOI QR코드

DOI QR Code

Calculation of Multiple Scattering in Water Cloud and Application in Remote Measurement of Cloud Physical Properties

구름에서의 다중산란효과 계산 및 이를 이용한 구름 물리변수 원격 추출 방법 연구

  • Received : 2013.11.26
  • Accepted : 2013.12.12
  • Published : 2014.02.25

Abstract

Multiple scattering effects in cloud are important error sources of the Mie scattering Lidar inversion method, which should be measured to correct the Lidar equation in single wavelength Mie Lidar. We have calculated the multiple scattering effects in liquid water clouds by using a Monte Carlo method, and we have applied these multiple scattering effects in measuring water cloud effective size and LWC (Liquid Water Content). When cloud effective size is less than $2.5{\mu}m$, we can easily extract cloud effective size and LWC by using two wavelength Lidar such as extinction coefficients measured at 355nm and 1064nm. For a larger size cloud, we can find that saturated degree of linear polarization is strongly correlated with cloud effective size, LWC, and extinction coefficients. From these correlations we know that we can measure LWC and cloud effective size if we use single wavelength Rotational Raman Lidar and Mie scattering polarization Lidar.

구름에서의 다중산란 효과는 Mie 산란현상을 이용하는 탄성산란 라이다에서 그 해를 구하는데 있어서, 매우 중요한 오차요인으로 작용하기 때문에 이 효과를 보정하는 것은 그 자체만으로도 매우 중요하다. 이를 위하여 구름에서 다중산란되는 현상을 Monte Carlo 방법으로 계산하였으며, 이 결과를 적용하여 물방울 구름의 총량과 유효입자크기를 추출하는 방법을 제안하였다. 구름의 유효입자 크기가 $2.5{\mu}m$ 이하일 경우엔 355 nm나 1064 nm에서 얻은 두 파장의 소광계수로 쉽게 그 값들을 구할 수 있음을 알 수 있었다. 크기가 큰 경우엔 라이다 신호의 안정화된 선형편광도가 유효입자크기, 총량, 그리고 소광계수와 관련이 있음을 알 수 있었으며, 이 관계를 통하여 큰 입자의 경우에도 라만 라이다와 편광 라이다를 이용한다면 유효입자크기와 총량을 구할 수 있다는 것을 알 수 있었다.

Keywords

References

  1. R. Chen, F. Chang, Z. Li, Z. Weng, R. Ferraro, and F. Weng, "Impact of the vertical variation of cloud droplet size on the estimation of cloud liquid water path and rain detection," J. Atmos. Sci. 64, 3843-3853 (2007). https://doi.org/10.1175/2007JAS2126.1
  2. Q. Han, W. B. Rossow, J. Chou, and R. M. Welch, "Global survey of the relationships of cloud albedo and liquid water path with droplet size using ISCCP," J. Climate 11, 1516-1528 (1998). https://doi.org/10.1175/1520-0442(1998)011<1516:GSOTRO>2.0.CO;2
  3. C. H. Twohy, M. D. Petters, J. R. Snider, B. Stevens, W. Tahnk, M. Wetzel, L. Russell, and F. Burnet, "Evaluation of the aerosol indirect effect in marine stratocumulus clouds: Droplet number, size, liquid water path, and radiative impact," J. Geophy. Res. Atmos. 110, D08203, doi:10.1029/2004JD005116 (2005).
  4. Y. Hu, M. Vaughan, C. McClain, M. Behrenfeld, H. Maring, D. Anderson, S. Sun-Mack, D. Flittner, J. Huang, B. Wielicki, P. Minnis, C. Weimer, C. Trepte, and R. Kuehn, "Global statistics of liquid water content and effective number concentration of water clouds over ocean derived from combined CALIPSO and MODIS measurements," Atmos. Chem. Phys. 7, 3353-3359 (2007). https://doi.org/10.5194/acp-7-3353-2007
  5. J. D. Klett, "Lidar inversion with variable backscatter/ extinction ratios," Appl. Opt. 24, 1638-1643 (1985). https://doi.org/10.1364/AO.24.001638
  6. U. Wandinger, "Multiple-scattering influence on extinction and backscatter-coefficient measurements with raman and high-spectral-resolution Lidars," Appl. Opt. 37, 417-427 (1998). https://doi.org/10.1364/AO.37.000417
  7. Y. Hu, Z. Liu, D. Winker, M. Vaughan, V. Noel, L. Bissonnette, G. Roy, and M. McGill, "Simple relation between Lidar multiple scattering and depolarization for water clouds," Opt. Lett. 31, 1809-1811 (2006). https://doi.org/10.1364/OL.31.001809
  8. D. P. Donovan, A. C. A. P. van Lammerren, R. J. Hogan, H. W. J. Ruschenberg, A. Apituey, P. Francis, P. Francis, J. Testud, J. Pelon, M. Quante, and J. Goddard, "Cloud effective particle size and water content profile retrievals using combined Lidar and radar observations: 2. Comparison with IR radiometer and in situ measurements of ice clouds," J. Geophy. Res. Atmos. 106, 22449-27464 (2001).
  9. D. P. Donovan and A. C. A. P. van Lammeren, "Cloud effective particle size and water content profile retrievals using combined Lidar and radar observations: 1. Theory and examples," J. Geophy. Res. Atmos. 106, 27425-27448 (2001). https://doi.org/10.1029/2001JD900243
  10. R. Boers, H. Russchenberg, J. Erkelens, V. Venema, A. van Lammeren, A. Apituley, and S. Jongen, "Ground-based remote sensing of stratocumulus properties during CLARA, 1996," J. Appl. Meteor. 39, 169-181 (2000). https://doi.org/10.1175/1520-0450(2000)039<0169:GBRSOS>2.0.CO;2
  11. R. T. Austin, G. L. Stephens, and Q.-L. Min, "Retrieval of liquid water path and effective drop size using radar data and shortwave optical depth," in Proc. Ninth ARM Science Team Meeting Proceedings (San Antonio, Texas, USA, March 1999).
  12. D. N. Whiteman and S. H. Melfi, "Cloud liquid water, mean droplet radius, and number density measurements using a Raman Lidar," J. Geoph. Res. 104, 411-419 (1999).
  13. T. Sakai, D. N. Whiteman, F. Russo, D. D. Turner, I. Veselovskii, S. H. Melfi, T. Nagai, and Y. Mano, "Liquid water cloud measurements using the Raman Lidar technique: current understanding and future research needs," J. Atmos. Oceanic Technol. 30, 1337-1353 (2013). https://doi.org/10.1175/JTECH-D-12-00099.1
  14. L. R. Bissonnette, G. Roy, G. Vallee, and S. Cantin, "Retrieval of cloud liquid water content and effective droplet diameter from multiply scattered Lidar returns," Proc. SPIE 4087, Applications of Photonic Technology 4, 939-946 (2000).
  15. L. R. Bissonnette, G. Roy, L. Poutier, S. G. Cober, and G. A. Isaac, "Multiple-scattering Lidar retrieval method: tests on Monte Carlo simulations and comparisons with in situ measurements," Appl. Opt. 41, 6307-6324 (2002). https://doi.org/10.1364/AO.41.006307
  16. G. de Boer and E. Eloranta, "Lidar-based retrievals of the microphysical properties of mixed-phase arctic stratus clouds and precipitation," in Proc. 23rd International Laser Radar Conference (Albuquerque, 2006).
  17. R. J. Hogan, "Fast approximate calculation of multiply scattered Lidar returns," Appl. Opt. 45, 5984-5992 (2006). https://doi.org/10.1364/AO.45.005984
  18. D. Kim, H. D. Cheong, Y. Kim, S. Volkov, and J. Lee, "Optical depth and multiple scattering depolarization in liquid clouds," Opt. Rev. 17, 509-512 (2010).
  19. C. M. R. Platt, "Remote sounding of high clouds. III: Monte Carlo calculations of multiple-scattered Lidar returns," J. Atmos. Sci. 38, 156-167 (1981). https://doi.org/10.1175/1520-0469(1981)038<0156:RSOHCI>2.0.CO;2
  20. D. M. Winker and L. R. Poole, "Monte-Carlo calculations of cloud returens for ground-based and space based LIDARS," Appl. Phys. B 60, 341-344 (1995). https://doi.org/10.1007/BF01082269
  21. K. E. Kunkel and J. A. Weinman, "Monte Carlo analysis of multiple scattered Lidar returns," J. Atmos. Sci. 33, 1772-1782 (1976) https://doi.org/10.1175/1520-0469(1976)033<1772:MCAOMS>2.0.CO;2
  22. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particle (A Wiley-Interscience Publications, 1983).
  23. Y. Liu and P. H. Daum, "Spectral dispersion of cloud droplet size distributions and the parameterization of cloud droplet effective radius," Geophy. Res. Lett. 27, 1903-1906 (2000) https://doi.org/10.1029/1999GL011011
  24. D. Kim and H. Cha, "Suggestion for qualitative Lidar identification of different types of aerosol using the twowavelength rotational raman and elastic Lidar," Opt. lett. 31, 2915-2917 (2006). https://doi.org/10.1364/OL.31.002915