DOI QR코드

DOI QR Code

Two-Wavelength Lasers Based on Oversized Rib Polymer Waveguide Bragg Reflectors

대형 립 폴리머 광도파로 브래그 격자를 이용한 두 파장 레이저

  • Sung, Chi-Hun (Nano-Bio Photonics Lab., Department of Electronic Engineering, Pusan National University) ;
  • Kim, Jun-Whee (Nano-Bio Photonics Lab., Department of Electronic Engineering, Pusan National University) ;
  • Shin, Jin-Soo (Photonic Networks Research Lab., Department of Electrical Engineering, Korea Advanced Institute of Science and Technology) ;
  • Oh, Min-Cheol (Nano-Bio Photonics Lab., Department of Electronic Engineering, Pusan National University)
  • 성치훈 (부산대학교 전자공학과 나노바이오광소자연구실) ;
  • 김준휘 (부산대학교 전자공학과 나노바이오광소자연구실) ;
  • 신진수 (한국과학기술원 전자공학과 광네트워크연구실) ;
  • 오민철 (부산대학교 전자공학과 나노바이오광소자연구실)
  • Received : 2013.12.30
  • Accepted : 2014.02.03
  • Published : 2014.02.25

Abstract

An external cavity laser supporting two wavelengths is demonstrated by incorporating polymer waveguide Bragg reflectors and a superluminescent light-emitting diode. An oversized rib waveguide structure and Bragg gratings are designed by using the effective-index and transmission-matrix methods. Bragg gratings with different periods are inscribed on a polymer waveguide through double-exposure laser interferometry. In order to tune the cavity loss affected by the reflectivity of Bragg gratings, a Bragg reflectors with varying length is incorporated. Two-wavelength-mode lasing is achieved for the device consisting of 2-mm long, 537-nm period gratings and 2.2-mm long, 540-nm period gratings; the lasing wavelengths are 1554 nm and 1564 nm, with an output power close to 0 dBm, a 20-dB bandwidth of 0.2 nm, and a side-mode suppression ratio of 45 dB.

두 파장 레이저를 구현하기 위해서 폴리머 광도파로 브래그 격자와 초발광 LED로 구성된 외부 공진 구조의 레이저를 제작하였다. 대형 립(oversized rib) 구조의 광도파로와 폴리머 광도파로 브래그 격자는 각각 유효굴절률법과 전송행렬법을 이용하여 설계하였으며, 서로 다른 격자 주기를 가지는 폴리머 광도파로 브래그 격자는 이중 노광 레이저 간섭법을 이용하여 제작하였다. 브래그 격자의 반사율 변화에 따른 외부 공진 레이저의 특성을 보기 위해 2 mm의 고정된 길이를 가지며 537 nm의 주기를 갖는 브래그 격자와 0.5 mm에서 6 mm까지 여러 가지 길이를 가지며 540 nm의 주기를 갖는 브래그 격자를 제작하였다. 격자 주기가 537 nm와 540 nm인 브래그 격자의 길이가 각각 2 mm와 2.2 mm일 때 제작된 두 파장 레이저는 1554 nm 파장과 1564 nm 파장에서 0 dBm에 가까운 출력 파워를 보이며, 45 dB이상의 SMSR(side mode suppression ratio)와 0.2 nm의 20-dB 대역폭 특성을 가짐을 확인하였다.

Keywords

References

  1. K. Lawniczuk, R. Piramidowicz, P. Szczepanski, P. J Williams, M. J. Wale, M. K. Smit, and X. J. M. Leijtens, "8-channel AWG-based multiwavelength laser fabricated in a multi-project wafer run," in Proc. 23rd International Conference on Indium Phosphide and Related Materials (Berlin, Germany, May 2011), pp. 1-4.
  2. G. kurczveil, M. J. R. Heck, D. Peters, J. M. Garcia, D. Spencer, and J. E. Bowers, "An integrated hybrid silicon multiwavelength AWG laser," IEEE J. Select. Topics Quantum Electron. 17, 1521-1527 (2011). https://doi.org/10.1109/JSTQE.2011.2112639
  3. M.-Y. Jeon, N.-J. Kim, J.-H Shin, J.-S. Jong, S.-P. Han, C.-W. Lee, Y.-A. Leem, D.-S. Yee, H.-S. Chun, and K.-H. Park, "Widely tunable dual-wavelength Er3+-doped fiber laser for tunable continuous-wave terahertz radiation," Opt. Express 18, 12291-12297 (2010). https://doi.org/10.1364/OE.18.012291
  4. A. J. Deninger, T. Göbel, D. Schönherr, T. Kinder, A. Roggenbuck, M. Köberle, F. Lison, T. Müller-Wirts, and P. Meissner, "Precisely tunable continuous-wave terahertz source with interferometric frequency control," Rev. Sci. Insturm. 79, 044702 (2008). https://doi.org/10.1063/1.2905033
  5. M.-Y. Jeon, N.-J. Kim, S.-P. Han, H.-S. Ko, H.-C. Ryu, D.-S. Lee, and K.-H. Park, "Rapidly frequency-swept optical beat source for continuous wave terahertz generation," Opt. Express 19, 18364-18371 (2011). https://doi.org/10.1364/OE.19.018364
  6. N.-J. Kim, S.-P. Han, H.-C. Ryu, H.-S. Ko, J.-W. Park, D.-H. Lee, M.-Y. Jeon, and K.-H. Park, "Distributed feedback laser diode integrated with distributed Bragg reflector for continuous-wave terahertz generation," Opt. Express 20, 17496-17502 (2012). https://doi.org/10.1364/OE.20.017496
  7. Y.-G. Han, T. V. A. Tran, S.-H. Kim, and S.-B. Lee, "Multiwavelength raman-fiber-laser-based long-distance remote sensor for simultaneous measurement of strain and temperature," Opt. Lett. 30, 1282-1284 (2005). https://doi.org/10.1364/OL.30.001282
  8. C. H. Yeh, F. Y. Shih, C. H. Wang, C. W. Chow, and S. Chi, "Tunable and stable single-longitudinal-mode dual wavelength erbium fiber laser with 1.3 nm mode spacing output," Laser Phys. Lett. 11, 821-824 (2008).
  9. X. Liu, X. Yang, F. Lu, J. Ng, X. Zhou, and C. Lu, "Stable and uniform dual-wavelength erbium-doped fiber laser based on fiber Bragg gratings and photonic crystal fiber," Opt. Express 13, 142-147 (2005). https://doi.org/10.1364/OPEX.13.000142
  10. N.-S. Son, K.-J. Kim, J.-W. Kim, and M.-C. Oh, "Near-infrared tunable lasers with polymer waveguide Bragg gratings," Opt. Express 20, 827-834 (2012). https://doi.org/10.1364/OE.20.000827
  11. K.-J. Kim, M.-C. Oh, S.-R. Moon, and C.-H. Lee, "Flexible polymeric tunable lasers for WDM passive optical networks," J. Lightwave Technol. 31, 982-987 (2013). https://doi.org/10.1109/JLT.2013.2241016
  12. J.-W. Kim, K.-J. Kim, N.-S. Son, and M.-C. Oh, "Strain-imposed external cavity tunable lasers operating for NIR wavelength," J. Opt. Soc. Korea 17, 172-176 (2013). https://doi.org/10.3807/JOSK.2013.17.2.172
  13. S.-H. Oh, K.-H. Yoon, K.-S. Kim, J.-B. Kim, O.-K. Kwon, D.-K. Oh, Y.-O. Noh, J.-K. Seo, and H.-J. Lee, "Tunable external cavity laser by hybrid integration of a superluminescent diode and a polymer Bragg reflector," IEEE J. Select. Topics Quantum Electron. 17, 1534-1541 (2011). https://doi.org/10.1109/JSTQE.2011.2130515
  14. R. Moosburger and K. Petermann, "4 ${\times}$ 4 digital optical matrix switch using polymeric oversized rib waveguides," IEEE Photon. Technol. Lett. 10, 684-686 (1998). https://doi.org/10.1109/68.669250

Cited by

  1. Characterization of a Wavelength-Tunable Fiber Laser Based on a Polymer Waveguide Bragg Grating Wavelength Filter vol.26, pp.6, 2015, https://doi.org/10.3807/KJOP.2015.26.6.306