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Abstract

The aim of this work is to determine supersonic nozzle profiles that are used in propulsion, for launchers or embarked with 

satellites. This design has the role of firstly, providing important propulsion, i.e. with uniform and parallel flow at exit; and 

secondly, to find short length profiles, without modification of the flow in the nozzle. The first elaborate program is used to 

determine the profile of the divergent, by using the characteristics method for an axisymmetric flow. The second program is 

conceived by using the finite volume method, to determine and test the profile found connected to a convergent.
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1. Introduction

In aeronautics, as in aerospace, conduits constitute the 

essential body in propulsion. The relaxation of gases in the 

conduit after the combustion chamber, where there is great 

pressure, to the exit where there is low pressure, generally 

atmospheric pressure or the vacuum of space, provides a 

force of propulsion that moves the vehicle. To achieve this 

objective, it should be taken care that the flow in the nozzle 

is without the presence of a shock wave, and that it is uniform 

and parallel at the exit. The profile slope of the divergent 

starts from the throat with a zero value; then it increases, 

according to an arc of a circle, up to a maximum value, which 

is a function of the exit Mach number; and then it decreases 

gradually to the exit, or it becomes zero (Fig. 1). 

Expansion waves are emitted by the first part, the arc of 

the circle, and are propagated in the flow, while entering into 

interaction with those that are emitted by the lower wall. In 

the second part of the divergent, which is the required part, 

the waves are eliminated, since the slope of the wall decreases 

in such a way that the flow becomes uniform and parallel 

at the exit. Two important questions arise, which are the 

radius of the arc of circle Rarc, and its maximum slope. Several 

executions of the computational code will enable us to obtain 

the two necessary values to achieve the objective.

2. Mathematic Formulation

The equations of the method of the characteristics 

treating an axisymmetric compressible flow are given by two 

differential equations connecting the velocity V, the Mach 

number M, and the angle 
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Concerning the variation of the section ratio of the nozzle 

according to the exit Mach number for the 2D case and axial 

symmetry, it is the same one as in the monodimensional 

case, since the flow at the exit is uniform and parallel (Fig. 7).

4. Results And Interpretation

4.1 Characteristic method

The profile exactitude is a function of the size grid, i.e. the 

number of the Mach lines or the division used, n. In Figure 

8, we present several profiles, according to the number 

of divisions, n=10,20,40 and 60. We note that for n=60, the 

profile already takes its final form, which does not change 

any more for n higher than 60. The same observation applies 

to an axisymmetric profile (Fig. 9). Figure 10 shows the 

difference between 2D and axisymetric profiles giving the 

same Mach number at the exit, with a uniform and parallel 

flow. The section ratio is the same for both. Notice that the 
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plane conduit is larger and longer than the axisymmetric 

nozzle.

To be sure that the calculation is well made, it is necessary 

to draw the characteristic lines in the calculation domain. 

Here, one presents only the axisymmetric profile. Fig. 11 

shows the characteristic lines propagating after the wall in 

arc, then entering into interaction with those that come from 

the lower wall; all the lines are eliminated by the convex wall, 

before reaching the exit of the nozzle.

To see the axial symmetry of the flow, we can also draw the 

Mach contours in the divergent case, (Fig. 12).

Our objective is to determine the exact profile for a 

cryotechnic engine, whose characteristics are given in Table 1:

This type of nozzle, used in cryotechnic launchers, is 

called the Vulcan engine. Considering that the ideal nozzle 

obtained with the characteristics method is long, one uses 

a truncated ideal nozzle with 1/3 of the divergent from the 

throat, because the important loss of kinetic energy is made 

at the beginning of the divergent. The advantage of the 

truncated nozzles is to gain much over the length; therefore, 

the weight is reduced, without much loss of thrust. 

Several exit Mach numbers were tested in such way that 

at 1/3 of the throat, the diameter was  De=1.76m. The results 

that were obtained appear in Table 2.

The ideal nozzle is presented in Figure 13. The divergent 

profile of the truncated ideal nozzle is represented in Figure 

14. 

The truncated nozzle profile starts with an arc whose 

radius equals 0.2719 m, until reaching a maximum slope 

of 27.068°, connected to a convex part, whose approximate 

form is exponential (Fig. 14).

We propose the following form:
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Figure 15 shows that the curve of approximation passes by 
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Table1 

Gas γ r (J/Kg.K) De (m) L (m)

Vapor 

H2O 
1.329 462 1.76 3.0 

qm 

(Kg/s) 

Ve 

(m/s)
S/Sth 

P0 

(bars) 

T0 

(K) 

270 4000 45 110 4000 
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all points constituting the profile of the truncated nozzle. The 

profile given by the preceding expression is reserved only 

for this nozzle, shown in Table 2, which corresponds well to 

the engine Vulcan 1 of the launcher ARIANE 5. It is the first 

family of profiles.

4.2 CFD application

We will test the profile found by the characteristics method 

with our computer code, by using the finite volume method 

of Van Leer [2], Haoui et al. [3], and Haoui [4], in order to 

determine the flow parameters in the nozzle, which starts by 

a convergence of conicity 45°, followed by an arc of a circle 

to the throat. The convergent is connected to the divergent 

profile found by the characteristics method. The grid used is 

represented in Figure 16.

The results are a function of grid size, number of iterations, 

and the CFL (Haoui et al. [5]). The interest in studying the flow 

by using the finite volume method is firstly, to compare with 

the characteristics method, and to see how the expansion 

waves are propagated in the nozzle, and the non-existence 

of a shock wave. Secondly, it is to be able to calculate the 

parameters at the exit of the truncated nozzle, especially 

the flow rate, and the thrust.  Figure 17 shows that the Mach 

contours in all of the truncated nozzle almost form inclined 

lines in the right part of the divergent. It should be noted that 

the flow is modified a little, compared to the characteristic 

method. 

The variation of the other parameters for the inviscid flow 

is represented in Figures 18, 19 and 20. It is noted that the 

axis Mach number is higher than that on the level of the 

wall, at the exit of the truncated nozzle. These are 5.62 and 

4,78, respectively, and the temperatures are 647K and 844K, 

respectively. The pressures are of 0.055 bars and 0.192 bars, 

respectively. Notice that the pressure at the exit is lower than 

the atmospheric pressure at the time of launcher takeoff, 

which causes a compression of gas downstream from the 

nozzle, which will disappear after 15 km of altitude.
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Table 2. Characteristics of ideal and truncated nozzle
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Fig. 14. Ideal truncated nozzle profile 

Table 2. 

,  ° 

ideal nozzle (characteristic method) 

14 

 

  (m/s)  (m)  (m)

5.95 3570 9 2.426 

  (KN)   (Kg/s) °

1024.19 285.37 88 0 

truncated ideal nozzle (CFD) 

  (m/s)  (m)  (m)

Axis = 5.62 

Wall = 4,78 

Axis = 3542

Wall = 3440
3.0 1.76 

  (KN)  (Kg/s) °

1019.74 285.12 45 7.63 

 

Figure 15 shows that the curve of approximation passes by all points constituting the profile of the 

truncated nozzle. The profile given by the preceding expression is reserved only for this nozzle, shown in 

Table 2, which corresponds well to the engine Vulcan 1 of the launcher ARIANE 5. It is the first family of 

profiles. 
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Fig. 15. Truncated nozzle profile approximation 
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Fig. 15. Truncated nozzle profile approximation 
Fig. 15.  Truncated nozzle profile approximation
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4.2 CFD application 

 

We will test the profile found by the characteristics method with our computer code, by using the 

finite volume method of Van Leer [2], Haoui et al. [3], and Haoui [4], in order to determine the flow 

parameters in the nozzle, which starts by a convergence of conicity 45°, followed by an arc of a circle to 

the throat. The convergent is connected to the divergent profile found by the characteristics method. The 

grid used is represented in Figure 16. 

The results are a function of grid size, number of iterations, and the CFL (Haoui et al. [5]). The 

interest in studying the flow by using the finite volume method is firstly, to compare with the 

characteristics method, and to see how the expansion waves are propagated in the nozzle, and the non-

existence of a shock wave. Secondly, it is to be able to calculate the parameters at the exit of the truncated 

nozzle, especially the flow rate, and the thrust.  Figure 17 shows that the Mach contours in all of the 

truncated nozzle almost form inclined lines in the right part of the divergent. It should be noted that the 

flow is modified a little, compared to the characteristic method.  

 

 

 

Fig. 16. Computational grid 

 

 

 

Fig. 16.  Computational grid
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Fig. 17. Mach number contours in the nozzle 

 

 The variation of the other parameters for the inviscid flow is represented in Figures 19, 20 and 21. It 

is noted that the axis Mach number is higher than that on the level of the wall, at the exit of the truncated 

nozzle. These are 5.62 and 4,78, respectively, and the temperatures are 647K and 844K, respectively. The 

pressures are of 0.055 bars and 0.192 bars, respectively. Notice that the pressure at the exit is lower than the 

atmospheric pressure at the time of launcher takeoff, which causes a compression of gas downstream from 

the nozzle, which will disappear after 15 km of altitude. 
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Fig. 19. Mach number evolution in the nozzle 

 

 

Fig. 17.  Mach number contours in the nozzle
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5. Conclusion

We confirm that the profiles of the propelling nozzles are 

traced, firstly by using the method of characteristics in such 

way that the flow at exit is uniform and parallel. In this case, 

one obtains the ideal nozzle form, which is longer. Secondly, 

it is necessary to use the truncated nozzle deduced from the 

ideal nozzle, which must be tested by a computer code that 

takes account of the flow at the inlet of the convergent to the 

exit of the nozzle. Note of course that the results found in 

Table 2 are identical to those of the Vulcan 1 engine of the 

ARIANE 5 launcher.
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Fig. 19. Mach number evolution in the nozzle 

 

 

Fig. 18.  Mach number evolution in the nozzle
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Fig. 20. Temperature evolution in the nozzle 
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Fig. 21. Pressure evolution in the nozzle 

 

 

5. CONCLUSION 

 We confirm that the profiles of the propelling nozzles are traced, firstly by using the method of 

characteristics in such way that the flow at exit is uniform and parallel. In this case, one obtains the ideal 

nozzle form, which is longer. Secondly, it is necessary to use the truncated nozzle deduced from the ideal 

Fig. 19.  Temperature evolution in the nozzle
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Fig. 20. Temperature evolution in the nozzle 
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Fig. 21. Pressure evolution in the nozzle 
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Fig. 20.  Pressure evolution in the nozzle




