마황부자세신탕(麻黃附子細辛湯)의 각 구성약물별 항산화 및 항염 효능에 관한 연구

Study on Antioxidant and Anti-inflammatory Effects of Components of Mahwangbujaseshin-tang

  • 최철우 (대전자생한방병원 한방재활의학과) ;
  • 오민석 (대전대학교 한의과대학 한방재활의학교실)
  • Choi, Chul-Woo (Department of Rehabilitation Medicine of Korean Medicine, Daejeon Jaseng of Korean Medicine Hospital) ;
  • Oh, Min-Seok (Department of Rehabilitation Medicine of Korean Medicine, College of Korean Medicine, Dae-jeon University)
  • 투고 : 2014.09.16
  • 심사 : 2014.10.07
  • 발행 : 2014.10.31

초록

Objectives This study was carried out to find out the Antioxidant and Anti-inflammatory Effects of Components of Mahwangbujaseshin-tang in LPS-Stimulated RAW264.7 Macrophages. Methods There are 5 experimental groups. ; normal, control, EH (Ephedrae Herba), ALRP (Aconiti Lateralis Radix Preparata) and AR (Asiasari Radix). The extract of EH, ALRP and AR ($100{\mu}g/ml$) was added to each group. We examined cytotoxicity, total phenolic contents, DPPH and ABTS free radical scavenging activity, Intracellular ROS (reactive oxygen species) production, NO (Total Nitric oxide), iNOS (inducible nitric oxide synthase), PGE2 (prostaglandin E2), COX-2 (cyclooxygenase-2), $IL-1{\beta}$ ($interleukin-1{\beta}$), IL-6 (interleukin-6), $TNF-{\alpha}$ (tumor necrosis factor-${\alpha}$), MMP-9 (matrix metalloproteinase-9), TIMP-1 (tissue inhibitor of metalloproteinase-1) and HO-1 (heme oxygenase-1) expression level. Results 1. Total phenolic contents of EH were in the highest level. 2. DPPH and ABTS free radical scavenging activity of EH was in the highest level. 3. ROS production was significantly decreased in AR. 4. NO production was significantly decreased in EH, ALRP, AR and iNOS expression was decreased in EH, AR. 5. PGE2 and COX-2 expression was decreased in EH, AR. 6. $IL-1{\beta}$ production was significantly decreased in EH, AR and IL-6 production was significantly decreased in AR. $TNF-{\alpha}$ production was significantly decreased in ALRP, AR. 7. MMP-9 and TIMP-1 production were significantly decreased in EH. 8. HO-1 expression was significantly increased in EH. 9. With simultaneous usage of SnPP which is expression inhibitor of HO-1, NO, $IL-1{\beta}$, IL-6 and $TNF-{\alpha}$ production were partially increased in EH, ALRP, AR. Conclusions According to this study, Components of Mahwangbujaseshin-tang have anti-oxidants and anti-inflammation effects in LPS-Stimulated RAW264.7 Macrophages.

키워드

참고문헌

  1. Radosavljevic T, Mladenovic D, Vucevic D, Vukicevic RJ. The role of oxidative/nitrosative stress in pathogenesis of paracetamol-induced toxic hepatitis. Med Pregl. 2010;64(11):827-32.
  2. Tzeng YL, Datta A, Kolli VK, Carlson RW, Stephens DS. Endotoxin of Neisseria meningitidis composed only of intact lipid A : inactivation of the meningococcal 3-deoxy-D-manno-octulosonic acid transferase. J Bacteriol. 2002;184(9):2379-88. https://doi.org/10.1128/JB.184.9.2379-2388.2002
  3. Hou YC, Janczuk A, Wang PG. Current trends in the development of nitric oxide donors. Current pharmaceutical design. 1999;5(6):417-41.
  4. Nussler AK, Billiar TR. Inflammation, immunoregulation, and inducible nitric oxide synthase. J Leukoc Biol. 1993;54(2):171-8.
  5. Albina JE, Reichner JS. Nitric oxide in inflammation and immunity. New Horiz. 1995;3(1):46-64.
  6. Lee SJ, Lim KT. Phytogly coprotein inhibits interleukin-$1{\beta}$ and interleukin-6 via p38 mitogenactivated protein kinase in lipopolysaccharide-stimulated RAW264.7 cells. Naunyn Schmi Arch Pharmacol. 2008;377:45-54. https://doi.org/10.1007/s00210-007-0253-8
  7. Ding AH, Nathan CF, Stuehr DJ. Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. Comparison of activating cytokines and evidence for independent production. J Immunol. 1988;141:2407-12.
  8. Liang YC, Huang YT, Tsai SH, Lin-Shiau SY, Chen CF, Lin JK. Suppression of inducible cyclooxygenase and inducible nitric oxide synthase by apigenin and related flavonoids in mouse macrophages. Carcinogenesis 1999;20:1945-52. https://doi.org/10.1093/carcin/20.10.1945
  9. Miyasaka N, Hirata Y. Nitric oxide and inflammatory arthritides. Life Sci. 1997;61(21):2073-81. https://doi.org/10.1016/S0024-3205(97)00585-7
  10. Brune B., J. Zhou, and A. Von Knethen. Nitric oxide, oxidative stress and apoptosis. Kidney Int Suppl. 2003;84:4-22.
  11. Delanty, N. and M. A. Dichter. Oxidative injury in the nervous system. Acta Neurol Scand. 1998;98:53-145.
  12. Maines MD. The heme oxygenase system: a regulator of second messenger gases. Annu Rev Pharmacol Toxicol 1997;37:517-54. https://doi.org/10.1146/annurev.pharmtox.37.1.517
  13. Lee TS, Chau LY. Heme oxygenase-1 mediates the anti-inflammatory effect of interleukin-10 in mice. Natl Med. 2002;8:240-6. https://doi.org/10.1038/nm0302-240
  14. Lin HY, Juan SH, Shen SC, Hsu FL, Chen YC. Inhibition of lipopolysaccharide-induced nitric oxide production by flavonoids in RAW264.7 macrophages involves heme oxygenase-1. Biochem Pharmacol. 2003;66:1821-32. https://doi.org/10.1016/S0006-2952(03)00422-2
  15. Bornman L, Baladi S, Richard MJ, Tyrrell RM, Polla BS. Differential regulation and expression of stress proteins and ferritin in human monocytes. J Cell Physiol. 1999;178(1):1-8. https://doi.org/10.1002/(SICI)1097-4652(199901)178:1<1::AID-JCP1>3.0.CO;2-Q
  16. 박병희 역. 임상응용 傷寒論解說. 강원:의방출판사. 2004:317-8.
  17. 李梴 편저, 진주표 역해. 醫學入門. 서울:법인문화사. 2009:1172-3.
  18. 김명구. DNP-ascaris로 감작시킨 흰쥐의 비만세포에 대한 麻黃附子細辛湯 및 小柴胡湯의 효과. 경희대학교 박사학위논문. 2001.
  19. 장재호, 김세길. 麻黃附子細辛湯이 실험동물의 심혈관계에 미치는 영향. 원광한의학. 1995;5(1):331-49.
  20. 고광석, 최승훈, 안규석, 문준전. 麻黃附子細辛湯 및 처방구성 약재가 Endotoxin으로 유발된 혈전증에 미치는 영향. 동의병리학회지. 1990;5:1-14.
  21. 배주연. LPS로 활성화된 복강 대식세포에서 麻黃이 배오된 10종 처방의 NO 억제 효과. 원광대학교 석사학위논문. 2009.
  22. 이형은, 오민석. 麻黃附子細辛湯이 MIA로 유도된 골관절염 Rat에 미치는 영향. 한방재활의학과학회지. 2014;24(2):65-81.
  23. 이한창, 염미정, 김건호, 심인섭, 최강덕, 이혜정, 함대현. 흰쥐의 Adjuvant 유발 다발성 관절염에 대한 麻黃 약침의 치료 효과. 동의생리병리학회지. 2003;17(2):346-51.
  24. 송성민, 송윤경, 임형호, 권기록, 임태진. 麻黃 추출물이 항산화에 미치는 영향. 대한약침학회지. 2007;10(2):57-65.
  25. 고동균, 윤정문, 이태희. 附子가 Lipopolysaccharide의 뇌실 주입으로 유발된 생쥐의 혈중 IL-6와 $TNF-{\alpha}$변화에 미치는 영향. 대한한의학방제학회지. 2004;12(1):195-208.
  26. 김윤희, 임윤경, 이현. 附子 약침이 흰쥐의 Collagen 유발관절염에 미치는 영향. 대한경락경혈학회지. 2006;23(2):137-54.
  27. 황규정. 족삼리 細辛 약침이 생쥐의 Collagen-induced arthritis에 미치는 영향. 대전대학교 박사학위논문. 2005.
  28. 정원석, 유현미, 서상완, 조준기, 손지우, 박민철, 최창민, 염승룡, 황상욱, 김영우, 송달수, 채영석, 김영목, 박성주, 신민교, 송호준. LPS로 활성화된 복강 대식세포에서 細辛추출물의 항염증 효과. 대한본초학회지. 2006;21(2):189-95.
  29. Gray JI, Dugan JRL. Inhibition of N-nitrosamine formation in model food system. J. Food Sci. 1975:40:981-985. https://doi.org/10.1111/j.1365-2621.1975.tb02248.x
  30. Park, S.N. Skin aging and antioxidants. J Korean Soc Cosmetic Chem. 1997;23:75-132.
  31. Chung, IM, Kim, KH, Ahn, JK. Screening of Korean medicinal and food plants with antioxidant activity. Kor J Med Sci. 1998;6:311-322.
  32. 吉益東洞. 藥徵. 서울:청홍출판사. 2006:161-4,174-80,149-51.
  33. 고성배, 김동희, 김성훈, 임낙철. 麻黃湯類의 임상적 활용을 위한 연구. 대전대학교 한의학연구소. 1999;7(2):361-84.
  34. McDaniel ML, Kwon G, Hill JR, Marshall CA, Corbett JA. Cytokines and nitric oxide in islet inflammation and diabetes. Proc Soc Exp Biol Med. 1996;211:24-32. https://doi.org/10.3181/00379727-211-43950D
  35. Kim DH, Park SJ, Jung JY, Kim SC, Byun SH. Antiinflammatory effects of the aqueous extract of Hwangnyenhaedok-tang in LPS-activated macrophage cells. Kor J Herbol. 2009;24:39-47.
  36. Dai J, Mumper RJ. Plant phenolics: Extraction, analysis, and their antioxidant and anticancer properties. Molecules. 2010;15:7313-52. https://doi.org/10.3390/molecules15107313
  37. Lu Y, Foo LY. Antioxidant and radical scavenging activities of polyphenols from apple pomace. Food Chem. 2000;68:81-5. https://doi.org/10.1016/S0308-8146(99)00167-3
  38. 박정우, 이영진, 윤선. 발효 대두 식품의 Polyphenol, 플라보노이드 함량과 다양한 측정방법에 따른 항산화 활성 비교. 한국식생활문화학회지. 2007;22(3):353-8.
  39. Giatgen A. The Dual Role of Nitric Oxide in Islet ${\beta}$-Cell. New Physiol Sci. 1999;14:49-53.
  40. 방면호. 植物資源으로부터 天然 抗酸化劑의 分離․同定. 경희대학교 대학원. 1999;18.
  41. 이영민, 배지현, 정호영, 김재현, 박동식. 국내산 산채류의 물 및 메탄올 추출물에 대한 항산화 활성. 한국식품영양과학회지. 2011;40(1):29-36.
  42. 김용덕, 마힌다, 고경수, 전유진, 김수현. 수확시기별 제주재래종 감귤과피의 활성산소종 소거활성. J Korean Soc Food Sci Nutr. 2009;38(4):462-9. https://doi.org/10.3746/jkfn.2009.38.4.462
  43. Kwon GJ, Choi DS, Wang MH. Biological activities of hot water extracts from Euonymus alatus leaf. Korean J Food Sci Technol. 2007;39: 569-74.
  44. Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39:44-84. https://doi.org/10.1016/j.biocel.2006.07.001
  45. Kim HJ, Jin CB, Lee YS. Antioxidative activities of phenolic compound isolated from Inonotus obliquus. Kor J Pharmacogn. 2007;38:1-16.
  46. Lowenstein CJ, Alley EW, Raval P, Snowman AM, Synder SH, Russell SW, Murphy WJ. Macrophage nitric oxide synthase gene: two upstream regions mediate induction by interferon gamma and lipopolysaccharide. Proc Natl Acad Sci USA. 1993;90:9730-4. https://doi.org/10.1073/pnas.90.20.9730
  47. Jaffrey SR, Snyder SH. Nitric oxide: a neural messenger. Annu Rev Cell Dev Biol. 1995;11:417-40. https://doi.org/10.1146/annurev.cb.11.110195.002221
  48. Choi YJ, Jo WS, Kim HJ, Nam BH, Kang EY, Oh SJ, Lee GA, Jeong MH. Anti-inflammatory effect of Chlorella ellipsoidea extracted from seawater by organic solvents. Korean J Fish Aquat Sci. 2010;43:39-45. https://doi.org/10.5657/kfas.2010.43.1.039
  49. Radi R, Beckman JS, Bush KM, Freeman BA. Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J Biol Chem. 1991;266(7):4244-50.
  50. Cryer B, Dubois A. The advent of highly selective inhibitors of cyclooxygenase. A review Prostaglanins & other Lipid Mediators. 1998;56:341-61. https://doi.org/10.1016/S0090-6980(98)00064-1
  51. Horton JK, Williams AS, Smith-Phillips Z, Martin RC, O'Beime G. Intracellular measurement of prostaglandin E2, Effects of anti-inflammatory drugs on cyclooxygenase activity and prostanoid expression. Analy Biochem. 1999;271:18-28. https://doi.org/10.1006/abio.1999.4118
  52. 김강태, 엄현섭, 지규용. 산두근 추출물이 인체폐암세포의 COX-2 발현 및 PGE2 생성에 미치는 영향. 동의생리병리학회지. 2007;21(4):907-15.
  53. 강진형. COX 저해제의 항암효과와 암 예방제로서 선택적 COX-2 억제제. 암심포지움. 2002;1.
  54. Iwanami K, et al. Crucial role of IL-6/IL-17 cytokine axis in the induction of arthritis by glucose 6 phosphate isomerase. Arthritis Rheum. 2008;58:754-63. https://doi.org/10.1002/art.23222
  55. Ji H, et al.. Critical roles for interleukin 1 and tumor necrosis factor alpha in antibody induced arthritis. J Exp Med. 2002;196:77-85. https://doi.org/10.1084/jem.20020439
  56. Chung KF, Barnes PJ. Cytokine in asthma. Thorax. 1999;54(1):825-57. https://doi.org/10.1136/thx.54.9.825
  57. Mori, L. et al. Attenuation of collagen-induced arthritis in 55-kDa TNF receptor type 1(TNFR1)-IgG1-treated and TNFR1-deficient mice. J Immunol. 1996;157:3178-82.
  58. 조 동, 강경희, 장명웅. 뇌수막염 환자의 뇌척수액에서 $IL-1{\beta}$, IL-6, IL-8, $TNF-{\alpha}$의 변화. 대한면역학회지. 1999;21(2):99-107.
  59. 김광석. 인체 섬유육종세포주 HT1080에서 MMP-9 및 MMP-2 유전자 내재성 발현에 대한 신호전달 기전. 충남대학교 대학원. 2005.
  60. Shaida A, Kenyon G, Devalia J, Davies RJ, MacDonald TT, Pender SL. Matrix metalloproteinases and their inhibitors in the nasal mucosa of patients with perennial allergic rhinitis. J Allergy Clin Immunol. 2001;108(5):791-6. https://doi.org/10.1067/mai.2001.119024
  61. Watelet JB, Bachert C, Claeys C, Van Cauwenberge P. Matrix metalloproteinases MMP-7, MMP-9 and their tissue inhibitor TIMP-1: expression in chronic sinusitis vs nasal polyposis. Allergy. 2004;59(1):54-60. https://doi.org/10.1046/j.1398-9995.2003.00364.x
  62. 김준모. 흡연이 비용종 상피세포와 섬유아세포에서 MMP-9, TIMP-1, VEGF의 발현에 미치는 영향. 울산대학교 대학원. 2008.
  63. Ga Hee Kim, Moon Hee Lee, Min Ho Han, Cheol Park, Su Hyun Hong and Yung Hyun Choi. Induction of Apoptosis by Citri Pericarpium Methanol Extract through Reactive Oxygen Species Generation in U937 Human Leukemia Cells. Journal of Life Science. 2013;23(8):1057-63. https://doi.org/10.5352/JLS.2013.23.8.1057
  64. Min, K. J., Lee, J. T., Joe, E. H. and Kwon, T. K. An $I{\kappa}B{\alpha}$ phosphorylation inhibitor induces heme oxygenase-1(HO-1) expression through the activation of reactive oxygen species (ROS)-Nrf2-ARE signaling and ROS-PI3K/Akt signaling in an $NF-{\kappa}B$-independent mechanism. Cell Signal. 2011;23:1505-13. https://doi.org/10.1016/j.cellsig.2011.05.013
  65. Pittala, V., Salerno, L., Romeo, G., Modica, M. N., Siracusa, M. A. A focus on heme oxygenase-1 (HO-1) inhibitors. Curr Med Chem. 2013;20:3711-32. https://doi.org/10.2174/0929867311320300003
  66. Jozkowicz, A., Was, H. and Dulak, J. Heme oxygenase-1 in tumors: is it a false frind? Antioxid Redox Signal. 2007;9:2099-117. https://doi.org/10.1089/ars.2007.1659
  67. Otterbein LE, Chai AM. Heme oxygenase: colors of defense against cellular stress. Am J Physiol. 2000;279:1029-37.
  68. Oh GS, Pae HO, Chung HT. Nitric oxide priming protects nitric oxide-mediated apoptosis via heme oxygenase-1 induction. Free Radical Biol Med. 2003;34:1136-45. https://doi.org/10.1016/S0891-5849(03)00064-9