DOI QR코드

DOI QR Code

Performance of Modified-Silicon Carbide Fiber Composites Membrane for Polymer Exchange Membrane Fuel Cells

표면처리된 실리콘 카바이드 섬유 복합막의 고분자 전해질 막 연료전지 성능

  • Park, Jeong Ho (Dep. of Chemical and biomolecular Eng. and Grad. Program of New energy and battery Eng., Yonsei Univ.) ;
  • Kim, Taeeon (Dep. of Chemical and biomolecular Eng. and Grad. Program of New energy and battery Eng., Yonsei Univ.) ;
  • Juon, Some (Dep. of Chemical and biomolecular Eng. and Grad. Program of New energy and battery Eng., Yonsei Univ.) ;
  • Cho, Yongil (Dep. of Chemical and biomolecular Eng. and Grad. Program of New energy and battery Eng., Yonsei Univ.) ;
  • Cho, Kwangyeon (Nano Convergence Intelligence Materials Team, Korea Institute of Ceramic Eng. and Tech.) ;
  • Shul, Yonggun (Dep. of Chemical and biomolecular Eng. and Grad. Program of New energy and battery Eng., Yonsei Univ.)
  • 박정호 (연세대학교 화공생명공학과 신에너지전지융합기술 협동과정) ;
  • 김태언 (연세대학교 화공생명공학과 신에너지전지융합기술 협동과정) ;
  • 전소미 (연세대학교 화공생명공학과 신에너지전지융합기술 협동과정) ;
  • 조용일 (연세대학교 화공생명공학과 신에너지전지융합기술 협동과정) ;
  • 조광연 (한국세라믹기술원 나노융합지능소재팀) ;
  • 설용건 (연세대학교 화공생명공학과 신에너지전지융합기술 협동과정)
  • Received : 2013.12.03
  • Accepted : 2014.02.28
  • Published : 2014.02.28

Abstract

The organic-inorganic composite membrane in polymer exchange membrane fuel cells (PEMFCs) have several fascinating technological advantages such as a proton conductivity, thermal stability and mechanical properties. As the inorganic filler, silicon carbide (SiC) fiber have been used in various fields due to its unique properties such as thermal stability, conductivity, and tensile strength. In this study, composite membrane was successfully fabricated by modified-silicon carbide fiber. Modified process, as a novel process in SiC, takes reaction by phosphoric acid after oxidation process (generated homogeniusly $SiO_2$ layer on SiC fiber). The mechanical property which was conducted by tensile test of the 5wt% modified-$SiO_2@SiCf$ composite membrane was better than that of Aquivion casting membrane as well as ion cxchange capacity(IEC) and proton conductivity. In addition, the single cell performance was observed that the 5wt% modified-$SiO_2@SiCf$ composite membrane was approximately $0.2A/cm^2$ higher than that of a Aquivion casting electrolyte membrane and electrochemical impedance was improved with the charge transfer resistance and membrane resistance.

Keywords

References

  1. A. Bauen, and D. Hart, "Assessment of the environmental benefits of transport and stationary fuel cells", J. Power. Sources., Vol. 86, 2000, pp. 482-494. https://doi.org/10.1016/S0378-7753(99)00445-0
  2. B. C. H. Steele, and A. Heinzel, "Materials for fuel cell technologies", Nature, Vol. 414, 2001, pp. 345-352. https://doi.org/10.1038/35104620
  3. M. L. Perry, and T. F. Fuller, "A Historical Perspective of Fuel Cell Technology in the 20th Century", J. Electrochem. Soc., Vol. 419, No. 7, 2002, pp. S59-S67.
  4. S. J. Peighambardoust, S. Rowshanzamir, and M. Amjadi, "Review of the proton exchange membranes for fuel cell applications", Int. J. Hydrogen Energy, Vol. 35, 2010, pp. 9349-9384. https://doi.org/10.1016/j.ijhydene.2010.05.017
  5. A. Stassi, I. Gatto, E. Passalacqua, V. Antonucci, A. S. Arico, L. Merlo, C. Oldani, and E. Pagano, "Performance comparison of long and short-side chain perfluorosulfonic membranes for high temperature polymer electrolyte membrane fuel cell operation", J. Power. Sources., Vol. 196, 2011, pp. 8925-8930. https://doi.org/10.1016/j.jpowsour.2010.12.084
  6. M. Rikukawa, and K. Sanui, "Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers", Prog. Polym. Sci., Vol. 25, 2000, pp. 1463-1502. https://doi.org/10.1016/S0079-6700(00)00032-0
  7. Y. T. Kim, K. H. Kim, M. K. Song, and H. W. Rhee, "Nafion/ZrSPP composite membrane for high temperature operation of proton exchange membrane fuel cells", Curr. Appl. Phys., Vol. 6, 2006, pp. 614-615. https://doi.org/10.1016/j.cap.2005.04.005
  8. R. Hammami, Z. Ahanmed, K. Charradi, Z. Beji, I. B. Assaker, J. B. Naceur, B. Auvity, G. Squadrito, and R. Chtourou, "Elaboration and characterization of hybrid polymer electrolytes Nafion-TiO2 for PEMFCs", Int. J. Hydrogen. Energy., Vol. 38, 2013, pp. 11583-11590. https://doi.org/10.1016/j.ijhydene.2013.02.013
  9. N. H. Jalani, K. Dunn, and R. Datta, "Synthesis and characterization of $Nafion^{(R)}$-$MO_2$(M=Zr, Si, Ti) nanocomposite membranes for higher temperature PEM fuel cells", Electrochim. Acta., Vol. 51, 2005, pp. 553-560. https://doi.org/10.1016/j.electacta.2005.05.016
  10. Y. S. Ye, C. Y. Tseng, W. C. Shen, J. S. Wang, K. J. Chen, M. Y. Cheng, J. Rick, Y. J. Huang, F. C. Chang, and B. J. Hwang, "A new graphenemodified protic ionic liquid-based composite membrane for solid polymer electrolytes", J. Mater. Chem., Vol. 21, 2011, pp. 10448-10453. https://doi.org/10.1039/c1jm11152c
  11. R. Kannan, B. A. Kakade, and V. K. Pillai, "Polymer electrolyte fuel cells using Nafion-based composite membranes with functionalized carbon nanotubes", Angew. Chem. Int. Ed., Vol. 47, 2008, pp. 2653-2656. https://doi.org/10.1002/anie.200704343
  12. S. Yajima, Y. Hasegawa, K. Okamura, and T. Matsuzawa, "Development of high tensile strength silicon carbide fiber using an organosilicon polymer precursor", Nature, Vol. 273, 1978, pp. 525-527. https://doi.org/10.1038/273525a0
  13. N. Agmon, "The Grotthuss mechanism", Chemical Physics Letters, Vol. 244, 1995, 456-462. https://doi.org/10.1016/0009-2614(95)00905-J
  14. H. A. Liu, and K. J. Balkus Jr., "Electrospinning of beta silicon carbide nanofibers", Mater. Lett., Vol. 63, 2009, 2361-2364. https://doi.org/10.1016/j.matlet.2009.08.009
  15. A. R. Bunsell, and A. Piant, "A review of the development of three generations of small diameter silicon carbide fibres", J. Mater. Sci., Vol. 41, 2006, pp. 823-839. https://doi.org/10.1007/s10853-006-6566-z
  16. Y. Hasegawa, "Synthesis of continuous silicon carbide fibre-Part 6: Pyrolysis process of cured polycarbosilane fibre and structure of SiC fibre", J. Mater. Sci., Vol. 24, 1989, pp. 1177-1190. https://doi.org/10.1007/BF02397045
  17. H. Q. Ly, R. J. Day, F. Heatly, "Conversion of Polycarbosilane(PCS) to SiC-Based Ceramic part 1. Characterization of PCS and Curing Products", J. Mater. Sci., Vol. 36, 2001, pp. 4037-4043. https://doi.org/10.1023/A:1017942826657
  18. J. J. Sha, J. S. Park, T. Hinoki, A. Kohyama, "Heat treatment effects on creep behavior of polycrystalline SiC fibers", Materials Characterization, Vol. 57, 2006, pp. 6-11. https://doi.org/10.1016/j.matchar.2005.11.019
  19. M. Kamal, I. K. Battisha, M. A. Salem, "Structural and thermal properties of monolithic silicaphosphate($SiO_2-P_2O_5$) gel glasses prepared by sol-gel technique", J. Sol-Gel. Sci. Technol., Vol. 58, 2011, pp. 507-517. https://doi.org/10.1007/s10971-011-2420-0
  20. T. E. Springer, T. A. Zawodzinski, M. S. Wilson, and S. Gottesfeld, "Characterization of polymer eletrolyte fuel cell using AC impedance spectroscopy", J. Electrochem. Soc., Vol. 143, 1996, pp. 587-599. https://doi.org/10.1149/1.1836485