DOI QR코드

DOI QR Code

Anti-inflammatory Activity of Perilla frutescens Britton Seed in RAW 264.7 Macrophages and an Ulcerative Colitis Mouse Model

RAW 264.7 대식세포와 궤양성 대장염 마우스 모델에서의 들깨의 항염증 효과

  • Lee, Yuna (Department of Food and Nutrition, Chungbuk National University) ;
  • Song, Boram (Department of Food and Nutrition, Chungbuk National University) ;
  • Ju, Jihyeung (Department of Food and Nutrition, Chungbuk National University)
  • 이유나 (충북대학교 식품영양학과) ;
  • 송보람 (충북대학교 식품영양학과) ;
  • 주지형 (충북대학교 식품영양학과)
  • Received : 2013.05.22
  • Accepted : 2013.10.27
  • Published : 2014.02.28

Abstract

This study aimed to investigate the anti-inflammatory activities of raw (P) and roasted (RP) Perilla frutescens Britton (perilla) seeds in RAW 264.7 macrophages and an ulcerative colitis mouse model. In lipopolysaccharide-treated RAW 264.7 cells, treatment with ethanol extract of P at the concentrations of 75 and $150{\mu}g/mL$ decreased nitric oxide (NO), interleukin-6 (IL-6), and tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) levels to 48-85% of the control (p<0.01). Treatment with RP extract exhibited similar effects on NO, IL-6, and TNF-${\alpha}$, decreasing those levels to 51-84% of the control (p<0.01). In dextran sulfate sodium-treated ulcerative colitis mice, dietary treatment with 1% RP for 7 days decreased the colonic levels of prostaglandin $E_2$ and leukotriene $B_4$ to 34% and 58% of the control, respectively (p<0.05). Dietary P treatment, however, did not decrease those levels significantly. These results indicate that roasted perilla seed exerts anti-inflammatory activity both in vitro and in vivo.

본 연구에서는 생 들깨와 볶은 들깨의 염증매개물질 감소 효과를 RAW 264.7 대식 세포와 궤양성 대장염이 유도된 마우스를 이용하여 비교 분석하고자 하였다. LPS 처리에 의해 활성화된 RAW 264.7 대식세포에서 들깨의 에탄올 추출물은 볶음 여부와는 관계없이 NO, IL-6, TNF-${\alpha}$와 같은 염증매개물질 수준을 유의적으로 감소시키는 효과(대조군 대비 45-85% 수준)가 있었다. 반면 DSS 처리에 의해 궤양성 대장염이 유도된 마우스 모델에서는, 볶은 들깨 식이(1%)만이 대장의 $PGE_2$, $LTB_4$와 같은 염증매개물질 수준을 유의적으로 감소시키는 효과(각각 대조군 대비 34%, 58% 수준)가 있었다. 이와 같은 연구 결과를 종합하여 보면, 볶은 들깨는 in vitro 항염성 뿐 아니라 in vivo 항염성을 가지는 것으로 판단된다. 앞으로 들깨의 볶음 과정에서 생성된 항염 기능 성분들을 분리 동정하는 연구와 볶은 들깨의 항염성과 관련된 기전에 관한 후속 연구가 지속적으로 이루어진다면 볶은 들깨가 대장염을 포함한 여러 염증관련 질병 예방에 유용한 소재로 이용될 수 있을 것으로 기대된다.

Keywords

References

  1. Lee CB. Coloured Flora of Korea. 1st ed. Hyang Mun Sa, Seoul, Korea. p. 140 (2003)
  2. Kim TJ. Korean Resources Plants. Seoul National University Publisher, Seoul, Korea. p. 60 (1996)
  3. Park JH, Yang CB. Studies on the removal of phytate from korean perilla (perilla ocimoides, L.) protein. Korean J. Food Sci. Technol. 22: 343-349 (1990)
  4. MHW. Korea health statistics: Korea national health and nutrition examination survey (KNHANES) V-1. Ministry of Health & Welfare, Seoul, Korea. pp. 345-348 (2010)
  5. Shin HS, Kim SW. Lipid composition of perilla seed. J. Am. Oil Chem. Soc. 71: 619-622 (1994) https://doi.org/10.1007/BF02540589
  6. National Academy of Agricultural Science. Food composition Table. 8th ed. Rural Development Administration, Suwon, Korea. p. 100 (2011)
  7. Park DS, Lee KI, Park KY. Quantitative analysis of dietary fibers from perilla frutescens seeds and antimutagenic effect of its extracts. J. Korean Soc. Food Sci. Nutr. 30: 900-905 (2001)
  8. Lee HA, Han JS. Anti-inflammatory effect of perilla frutescens (L.) Britton var. frutescens extract in LPS-stimulated raw 264.7 macrophages. Prev. Nutr. Food Sci. 17: 109-115 (2012) https://doi.org/10.3746/pnf.2012.17.2.109
  9. Kim KH. Antioxidative effect of various solvent extracts from roasted perilla oil. Woosong Review 8: 1-11 (2003)
  10. Okuno M, Kajiwara K, Imai S, Kobayashi T, Honma N, Maki T, Suruga K, Goda T, Takase S, Muto Y, Moriwaki H. Perilla oil prevents the excessive growth of visceral adipose tissue in rats by down-regulating adipocyte differentiation. J. Nutr. 127: 1752-1757 (1997)
  11. Narisawa T, Takahashi M, Kotanagi H, Kusaka H, Yamazaki Y, Koyama H, Fukaura Y, Nishizawa Y, Kotsugai M, Isoda Y, Hirano J, Noritoshi N. Inhibitory effect of dietary perilla oil rich in the n-3 polyunsaturated fatty acid ${\alpha}$-linolenic acid on colon carcinogenesis in rats. Jpn. J. Cancer Res. 82: 1089-1096 (1991) https://doi.org/10.1111/j.1349-7006.1991.tb01762.x
  12. Yoon SK, Kim JH, Kim ZU. Studies on antioxidant activity of ethanol extracts from defatted perilla flour. Korean J. Food Sci. Technol. 25: 160-164 (1993)
  13. Cho HS, Ahn MS. Antioxidative effect of phenolic acids in defatted perilla flour on soybean oil. Korean J. Food Cookery Sci. 15: 55-60 (1999)
  14. Um MY, Choi WH, An JY, Kim SR, Ha TY. Effect of defatted sesame and perilla methanol extracts on cognitive function and antioxidant activity in SAMP8 mice. Korean J. Food Sci. Technol. 36: 637-642 (2004)
  15. Rhie SG, Park YJ. Effect of the addition of defatted perilla on lipid metabolism in rats. J. Korean Soc. Food. Nutr. 20: 72-77 (1991)
  16. Paschos GK, Magkos F, Panagiotakos DB, Votteas V, Zampelas A. Dietary supplementation with flaxseed oil lowers blood pressure in dyslipidaemic patients. Eur. J. Clin. Nutr. 61: 1201-1206 (2007) https://doi.org/10.1038/sj.ejcn.1602631
  17. Holy EW, Forestier M, Richter EK, Akhmedov A, Leiber F, Camici GG, Mocharla P, LUscher TF, Beer JH, Tanner FC. Dietary ${\alpha}$-linolenic acid inhibits arterial thrombus formation, tissue factor expression, and platelet activation. Arterioscler. Thromb. Vasc. Biol. 31: 1772-1780 (2011) https://doi.org/10.1161/ATVBAHA.111.226118
  18. Djousse L, Pankow JS, Eckfeldt JH, Folsom AR, Hopkins PN, Province MA, Ellison RC. Relation between dietary linolenic acid and coronary artery disease in the national heart, lung, and blood institute family heart study. Am. J. Clin. Nutr. 74: 612-619 (2001)
  19. Song JH, Park HS, Seo ES, Kim DY. Effect of different dietary fats on colon tumor incidence and in vivo cell proliferation in colonic mucosa of MNU-treated rats. Korean J. Nutr. 27: 552-562 (1994)
  20. Frankel EN, Huang SW, Aeschbach R, Prior E. Antioxidant activity of a rosemary extract and its constituents, carnosic acid, carnosol, and rosmarinic acid, in bulk oil and oil-in-water emulsion. J. Agr. Food Chem. 44: 131-135 (1996) https://doi.org/10.1021/jf950374p
  21. Swarup V, Ghosh J, Ghosh S, Saxena A, Basu A. Antiviral and anti-inflammatory effects of rosmarinic acid in an experimental murine model of japanese encephalitis. Antimicrob. Agents. Ch. 51: 3367-3370 (2007) https://doi.org/10.1128/AAC.00041-07
  22. Osakabe N, Yasuda A, Natsume M, Yoshikawa T. Rosmarinic acid inhibits epidermal inflammatory responses: anticarcinogenic effect of perilla frutescens extract in the murine two-stage skin model. Carcinogenesis 25: 549-557 (2004)
  23. Osakabe N, Yasuda A, Natsume M, Sanbongi C, Kato Y, Osawa T, Yoshikawa T. Rosmarinic acid, a major polyphenolic component of perilla frutescens reduces lipopolysaccharide (LPS)-induced liver injury in d-galactosamine (d-GalN)-sensitized mice. Free Radical Bio. Med. 33: 798-806 (2002) https://doi.org/10.1016/S0891-5849(02)00970-X
  24. Furtado MA, de Almeida LC, Furtado RA, Cunha WR, Tavares DC. Antimutagenicity of rosmarinic acid in Swiss mice evaluated by the micronucleus assay. Mutat. Res.-Gen. Tox. En. 657: 150-154 (2008) https://doi.org/10.1016/j.mrgentox.2008.09.003
  25. Chakraborty D, Mandal SM, Chakraborty J, Bhattacharyaa PK, Bandyopadhyay A, Mitra A, Gupta K. Antimicrobial activity of leaf extract of basilicum polystachyon (L) moench. Indian J. Exp. Biol. 45: 744-748 (2007)
  26. Takano H, Osakabe N, Sanbongi C, Yanagisawa R, Inoue KI, Yasuda A, Natsume M, Baba S, Ichiishi EI, Yoshikawa T. Extract of perilla frutescens enriched for rosmarinic acid, a polyphenolic phytochemical, inhibits seasonal allergic rhinoconjunctivitis in humans. Exp. Biol. Med. 229: 247-254 (2004)
  27. Tsai SJ, Yin MC. Antioxidative and anti-inflammatory protection of oleanolic acid and ursolic acid in PC12 cells. J. Food Sci. 73: 174-178 (2008)
  28. Hsu HY, Yang JJ, Lin CC. Effects of oleanolic acid and ursolic acid on inhibiting tumor growth and enhancing the recovery of hematopoietic system postirradiation in mice. Cancer Lett. 111: 7-13 (1997) https://doi.org/10.1016/S0304-3835(96)04481-3
  29. Sohn KH, Lee HY, Chung HY, Young HS, Yi SY, Kim KW. Anti-angiogenic activity of triterpene acids. Cancer Lett. 94: 213-218 (1995) https://doi.org/10.1016/0304-3835(95)03856-R
  30. Medzhitov R. Origin and physiological roles of inflammation. Nature 454: 428-435 (2008) https://doi.org/10.1038/nature07201
  31. Coussens LM, Werb Z. Inflammation and cancer. Nature 420: 860-867 (2002) https://doi.org/10.1038/nature01322
  32. Libby P. Inflammation and cardiovascular disease mechanisms. Am. J. Clin. Nutr. 83: 456S-460S (2006)
  33. Gismera CS, Aladren BS. Inflammatory bowel diseases: a disease (s) of modern times? Is incidence still increasing?. World J. Gastroenterol. 14: 5491-5498 (2008) https://doi.org/10.3748/wjg.14.5491
  34. Yang SK, Yun S, Kim JH, Park JY, Kim HY, Kim YH, Chang DK, Kim JS, Song IS, Park JB, Park ER, Kim KJ, Moon G, Yang SH. Epidemiology of inflammatory bowel disease in the songpa-kangdong district. Seoul, Korea, 1986-2005: A KASID study. Inflamm. Bowel Dis. 14: 542-549 (2008) https://doi.org/10.1002/ibd.20310
  35. Cosnes J, Gower-Rousseau C, Seksik P, Cortot A. Epidemiology and natural history of inflammatory bowel diseases. Gastroenterology 140: 1785-1794 (2011) https://doi.org/10.1053/j.gastro.2011.01.055
  36. Cabre E, Domenech E. Impact of environmental and dietary factors on the course of inflammatory bowel disease. World J. Gastroenterol. 18: 3814-3822 (2012) https://doi.org/10.3748/wjg.v18.i29.3814
  37. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR. Analysis of nitrate, nitrite, and [ISN] nitrate in biological fluids. Anal. Biochem. 126: 131-138 (1982) https://doi.org/10.1016/0003-2697(82)90118-X
  38. Willeaume V, Kruys V, Mijatovic T, Huez G. Tumor necrosis factor-alpha production induced by viruses and by lipopolysaccharides in macrophages: similarities and differences. J. Inflamm. 46: 1-12 (1995)
  39. Hur SY. Macrophage stimulating activity of perila extract in vitro and in vivo. MS thesis. Sookmyung Women's University, Seoul, Korea (1997)
  40. Ee KY, Agboola S, Rehman A, Zhao J. In vitro antioxidant and bioactive properties of raw and roasted wattle (Acacia victoriae Bentham) seed extracts. Int. J. Food. Sci. Tech. 47: 2000-2008 (2012) https://doi.org/10.1111/j.1365-2621.2012.03063.x
  41. Dewanto V, Wu X, Liu RH. Processed sweet corn has higher antioxidant activity. J. Agr. Food Chem. 50: 4959-4964 (2002) https://doi.org/10.1021/jf0255937
  42. Paur I, Balstad TR, Blomhoff R. Degree of roasting is the main determinant of the effects of coffee on NF-${\kappa}B$ and EpRE. Free Radical Bio. Med. 48: 1218-1227 (2010) https://doi.org/10.1016/j.freeradbiomed.2010.02.005
  43. Perrone D, Farah A, Donangelo CM. Influence of coffee roasting on the incorporation of phenolic compounds into melanoidins and their relationship with antioxidant activity of the brew. J. Agr. Food Chem. 60: 4265-4275 (2012) https://doi.org/10.1021/jf205388x
  44. Lee SW, Jeung MK, Park MH, Lee SY, Lee JH. Effects of roasting conditions of sesame seeds on the oxidative stability of pressed oil during thermal oxidation. Food Chem. 118: 681-685 (2010) https://doi.org/10.1016/j.foodchem.2009.05.040
  45. Kawada M, Arihiro A, Mizoguchi E. Insights from advances in research of chemically induced experimental models of human inflammatory bowel disease. World J. Gastroenterol. 13: 5581-5593 (2007) https://doi.org/10.3748/wjg.v13.i42.5581
  46. Korea Rural Economic Institute. Food balance sheet. Korea Rural Economic Institute, Seoul, Korea. p. 11 (2011)
  47. Newmark HL. Nutrient density: an important and useful tool for laboratory animal studies. Carcinogenesis 8: 871-873 (1987) https://doi.org/10.1093/carcin/8.7.871
  48. Amacher DE. A toxicologist's guide to biomarkers of hepatic response. Hum. Exp. Toxicol. 21: 253-262 (2002) https://doi.org/10.1191/0960327102ht247oa
  49. Joshi VD. Anatomy and physiology for nursing and healthcare. BI Publications Pvt Ltd., Janpath, New Delhi, India. pp. 216-219 (2006)
  50. Herias MV, Koninkx JF, Vos JG, van Dijk JE. Probiotic effects of lactobacillus casei on DSS-induced ulcerative colitis in mice. Int. J. Food. Microbiol. 103: 143-155 (2005) https://doi.org/10.1016/j.ijfoodmicro.2004.11.032
  51. Cho EJ, Shin JS, Noh YS, Cho YW, Hong SJ, Park JH, Lee JY, Lee JY, Lee KT. Anti-inflammatory effects of methanol extract of patrinia scabiosaefolia in mice with ulcerative colitis. J. Ethnopharmacol. 136: 428-435 (2010)
  52. Arafa HM, Hemeida RA, El-Bahrawy AI, Hamada FM. Prophylactic role of curcumin in dextran sulfate sodium (DSS)-induced ulcerative colitis murine model. Food Chem. Toxicol. 47: 1311-1317 (2009) https://doi.org/10.1016/j.fct.2009.03.003

Cited by

  1. Antioxidant Activities of Perilla frutescens Britton Seed Extract and Its Inhibitory Effects against Major Characteristics of Cancer Cells vol.44, pp.2, 2015, https://doi.org/10.3746/jkfn.2015.44.2.208
  2. Synergistic Anti-inflammatory Effect of Rosmarinic Acid and Luteolin in Lipopolysaccharide-Stimulated RAW264.7 Macrophage Cells vol.47, pp.1, 2015, https://doi.org/10.9721/KJFST.2015.47.1.119
  3. Potential anti-mutagenicity, antioxidant, and anti-inflammatory capacities of the extract from perilla seed meal pp.01458884, 2018, https://doi.org/10.1111/jfbc.12556