DOI QR코드

DOI QR Code

The Effect of Cordycepin on the Production of Pro-inflammatory Cytokines in Mouse Peritoneal Macrophages

코디세핀이 마우스 복강 대식세포에서 전염증성 사이토카인의 생성에 미치는 영향

  • Seo, Min-Jeong (Medi-Farm Industrialization Research Center, Dong-A University) ;
  • Kang, Byoung-Won (Medi-Farm Industrialization Research Center, Dong-A University) ;
  • Kim, Min-Jeong (Medi-Farm Industrialization Research Center, Dong-A University) ;
  • Lee, Hye-Hyeon (Medi-Farm Industrialization Research Center, Dong-A University) ;
  • Seo, Kwon-Il (Department of Food Nutrition, Sunchon National University) ;
  • Kim, Kwang-Hyuk (Department of Microbiology, Kosin University College of Medicine) ;
  • Jeong, Yong-Kee (Medi-Farm Industrialization Research Center, Dong-A University)
  • 서민정 (동아대학교 Medi-Farm 산업화 연구사업단) ;
  • 강병원 (동아대학교 Medi-Farm 산업화 연구사업단) ;
  • 김민정 (동아대학교 Medi-Farm 산업화 연구사업단) ;
  • 이혜현 (동아대학교 Medi-Farm 산업화 연구사업단) ;
  • 서권일 (순천대학교 식품영양학과) ;
  • 김광혁 (고신대학교 의과대학 미생물학교실) ;
  • 정영기 (동아대학교 Medi-Farm 산업화 연구사업단)
  • Received : 2013.06.20
  • Accepted : 2013.12.03
  • Published : 2014.02.28

Abstract

The effect of cordycepin purified from Cordyceps militaris on macrophage activation was investigated in peritoneal macrophages isolated from C57BL6 mice. Lipopolysaccharide-induced mouse peritoneal cells showed that cordycepin treatment increased the expression of the inflammatory cytokines interleukin (IL)-$1{\beta}$, IL-12, and tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), leading to early inflammation-mediated reactions, the activation of immunological responses, and T lymphocyte activation. T lymphocytes, activated by a greater production of IL-6, resulted in antibody-generating immune reactions, suggesting that cordycepin was effective at inducing immunological responses. Consistent with the increase in the inflammation-mediating factors including nitric oxide (NO) and hydrogen peroxide ($H_2O_2$), the toxic response of macrophages was activated and effectively induced inflammation. These findings demonstrate that cordycepin is involved in reducing cell injury provoked by inflammatory reactions. Therefore, these results suggest that cordycepin treatment of mouse peritoneal cells induces inflammation-mediated immunological responses and immunostimulation.

본 연구는 동충하초(Cordyces militaris) 유래의 기능성 물질인 코디세핀의 면역활성을 검증하기 위하여 C57BL6 마우스 복강 대식세포를 이용하여 코디세핀이 대식세포의 활성화에 미치는 영향에 대하여 시험하였다. 그 결과 LPS에 의해 유도된 마우스 복강세포는 코디세핀의 작용에 의해 IL-$1{\beta}$, IL-12, TNF-${\alpha}$의 염증성 사이토카인의 생성이 증대되어 초기 염증매개 반응을 유도하여 선천면역반응의 활성화와 그리고 면역작용에 있어 후기 적응면역의 전환으로의 T 림프구의 활성화가 예상된다. 또한 IL-6의 생성증대로 활성화된 T 림프구에 의해 B 림프구의 항체생성반응을 매개하는 면역반응도 상승할 것으로 사료된다. 그리고 대식세포에 의한 염증반응에서 염증매개인자인 NO와 $H_2O_2$의 생성을 증대시킴에 따라 대식세포의 독성작용을 활성화시켜 염증반응을 효과적으로 유도할 것으로 보이며, 또한 $H_2O_2$의 후기 생성을 저해하였는데 이는 염증반응에 유도될 수 있는 세포의 손상으로부터 세포를 보호할 수 있을 것으로 사료된다. 따라서 코디세핀은 외부인자로부터 염증매개성 면역반응의 증강작용을 나타내는 것으로 사료된다.

Keywords

References

  1. Iwasaki A, Medzhitov R. Regulation of adaptive immunity by the innate immune system. Science 327: 291-295 (2010) https://doi.org/10.1126/science.1183021
  2. Janeway CJ. How the immune system works to protect the host from infection. P. Natl. Acad. Sci. USA 98: 7461-7468 (2001) https://doi.org/10.1073/pnas.131202998
  3. Medzhitov R. Recognition of microorganisms and activation of the immune response. Nature 449: 819-826 (2007) https://doi.org/10.1038/nature06246
  4. Minami M, Shimizu K, Okamoto Y, Folco E, Ilasaca ML, Feinberg MW, Aikawa M, Libby P. Prostaglandin E receptor type 4-associated protein interacts directly with NF-kappa B1 and attenuates macrophage activation. J. Biol. Chem. 283: 9692-9703 (2008) https://doi.org/10.1074/jbc.M709663200
  5. Rietschel ET, Kirikae T, Schade FU, Mamat U, Schmidt G, Loppnow H, Ulmer AJ, Zähringer U, Seydel U, Di Padova F. Bacterial endotoxin: molecular relationships of structure to activity and function. FASEB J. 8: 217-225 (1994)
  6. Kindt TJ, Goldsby RA, Osborne BA. Innate immunity: Tenney S. Kuby Immunology. 6th ed. Freeman Press, New York, NY, USA. pp. 52-73 (2007)
  7. Robbins SL, Kumar V, Cotran RS. Acute and chronic inflammation: Mitchell S. Pathologic basis of disease. 7th ed. W. B. Saunders Co., Philadelphia, PA, USA. pp. 47-86 (2006)
  8. Laskin DL, Pendino KJ. Macrophages and inflammatory mediators in tissue injury. Annu. Rev. Pharmacol. 35: 655-677 (1995) https://doi.org/10.1146/annurev.pa.35.040195.003255
  9. Arancibia SA, Beltran CJ, Aguirre IM, Silva P, Peralta AL, Malinarich F, Hermoso MA. Toll-like receptors are key participants in innate immune responses. Biol. Res. 40: 97-112 (2007)
  10. Park C, Hong SH, Lee JY, Kim GY, Choi BT, Lee YT, Park DI, Park YM, Jeong K, Choi YH. Growth inhibition of U937 leukemia cells by aqueous extract of Cordyceps militaris through induction of apoptosis. Oncol. Rep. 13: 1211-1216 (2005)
  11. Han JY, Im J, Choi JN, Lee CH, Park HJ, Park DK, Yun CH, Han SH. Induction of IL-8 expression by Cordyceps militaris grown on germinated soy-beans through lipid rafts formation and signaling pathways via ERK and JNK in A549 cells. J. Ethnopharmacol. 127: 55-61 (2010) https://doi.org/10.1016/j.jep.2009.09.051
  12. Kim CS, Lee SY, Cho SH, Ko YM, Kim BH, Kim HJ, Park JC, Kim DK, Ahn H, Kim BO, Lim SH, Chun HS, Kim DK. Cordyceps militaris induces the IL-18 expression viaits promoter activation for IFN-gamma production. J. Ethnopharmacol. 120: 366-371 (2008) https://doi.org/10.1016/j.jep.2008.09.010
  13. Lee H, Kim YJ, Kim HW, Lee DH, Sung MK, Park T. Induction of apoptosis by Cordyceps militaris through activation of caspase-3 in leukemia HL-60 cells. Biol. Pharm. Bull. 29: 670-674 (2006) https://doi.org/10.1248/bpb.29.670
  14. Won SY, Park EH. Anti-inflammatory and related pharmacological activities of cultured mycelia and fruiting bodies of Cordyceps militaris. J. Ethnopharmacol. 96: 555-561 (2005) https://doi.org/10.1016/j.jep.2004.10.009
  15. Choi S, Lim MH, Kim KM, Jeon BH, Song WO, Kim TW. Cordycepin-induced apoptosis and autophagy in breast cancer cells are independent of the estrogen receptor. Toxicol. Appl. Pharm. 257: 165-173 (2011) https://doi.org/10.1016/j.taap.2011.08.030
  16. Jeong JW, Jin CY, Park C, Hong SH, Kim GY, Jeong YK, Lee JD, Yoo YH, Choi YH. Induction of apoptosis by cordycepin via reactive oxygen species generation in human leukemia cells. Toxicol. In. Vitro. 25: 817-824 (2011) https://doi.org/10.1016/j.tiv.2011.02.001
  17. Jeong JW, Jin CY, Kim GY, Lee JD, Park C, Kim GD, Kim WJ, Jung WK, Seo SK, Choi IW, Choi YH. Anti-inflammatory effects of cordycepin via suppression of inflammatory mediators in BV2 microglial cells. Int. Immunopharmacol. 10: 1580-1586 (2010) https://doi.org/10.1016/j.intimp.2010.09.011
  18. Ramesh T, Yoo SK, Kim SW, Hwang SY, Sohn SH, Kim IW, Kim SK. Cordycepin (3'-deoxyadenosine) attenuates age-related oxidative stress and ameliorates antioxidant capacity in rats. Exp. Gerontol. 47: 979-987 (2012) https://doi.org/10.1016/j.exger.2012.09.003
  19. Zhou X, Meyer CU, Schmidtke P, Zepp F. Effect of cordycepin on interleukin-10 production of human peripheral blood mononuclear cells. Eur. J. Pharmacol. 453: 309-317 (2002) https://doi.org/10.1016/S0014-2999(02)02359-2
  20. Cha JY., Ahn HY., Cho YS. and Je JY. Protective effect of cordycepin-enriched cordyceps militaris on alcoholic hepatotoxicity in Sprague-Dawley rat. Food Chem. Toxicol. 60: 52-57 (2013) https://doi.org/10.1016/j.fct.2013.07.033
  21. Jeong MH, Seo MJ, Park JU, Kang BW, Kim KS, Lee JY, Kim GY, Kim JI, Choi YH, Kim KH, Jeong YK. Effect of cordycepin purified from Cordyceps militaris on Th1 and Th2 cytokines in mouse splenocytes. J. Microbiol. Biotechnol. 22: 1161-1164 (2012) https://doi.org/10.4014/jmb.1203.03039
  22. Seo MJ, Kim MJ, Lee HH, Park JU, Kang, BW, Kim KY, Rhu EJ, Kim JI, Kim KH, Jeong, YK. Effect of Cordycepin on the expression of the inflammatory cytokines TNF-alpha, IL-6, and IL-17A in C57BL/6 mice. J. Microbiol. Biotechnol. 23: 156-160 (2013) https://doi.org/10.4014/jmb.1211.11032
  23. Kim HG, Shrestha B, Lim SY, Yoon DH, Chang WC, Shin DJ, Han SK, Park SM, Park JH, Park HI, Sung JM, Jang YS, Chung NS, Hwang KC, Kim TW. Cordycepin inhibits lipopolysaccharide-induced inflammation by the suppression of NF-kappaB through Akt and p38 inhibition in RAW 264.7 macrophage cells. Eur. J. Pharmacol. 545: 192-199 (2006) https://doi.org/10.1016/j.ejphar.2006.06.047
  24. Barbara BM, Stanley MS. Methods in Cellular Immunology. W. H. Freeman & Co Ltd., Ocford, UK. pp. 16-17 (1980)
  25. Park JY, Pillinger MH. Interleukin-6 in the pathogenesis of rheumatoid arthritis. Bull. NYU Hosp. Jt. Dis. 65: 4-10 (2007)
  26. Balkwill FR, Maylor MS, Malik S. Tumor necrosis factor as an anti-cancer agent. Eur. J. Cancer. Clin. On. 26: 641-644 (1990) https://doi.org/10.1016/0277-5379(90)90097-D
  27. Watford WT, Moriguchi M, Morinobu A, O'Shea JJ. The biology of IL-12: coordinating innate and adaptive immune responses. Cytokine Growth. F. R. 14: 361-368 (2003) https://doi.org/10.1016/S1359-6101(03)00043-1
  28. Lee JY, Ko SH, Lee YJ, Lee SY, Park HJ, Shin TY, Jeon H. Anti-inflammatory Effect of MeOH Extract of cibotium barometz in IFN-$\gamma$ and LPS-stimulated mouse peritoneal macrophage. Korean J. Pharmacogn. 41: 108-114 (2010)
  29. McCartney-Francis N, Allen JB, Mizel DE, Albina JE, Xie QW, Nathan CF, Wahl SM. Suppression of arthritis by an inhibitor of nitric oxide synthase. J. Exp. Med. 178: 749-754 (2013)
  30. Weisz A, Cicatiello L, Esumi H. Regulation of the mouse inducible-type nitric oxide synthase gene promoter by interferongamma, bacterial lipopolysaccharide and N Gmonomethyl-L-arginine. Biochem. J. 316: 209-215 (1996)

Cited by

  1. Anti-atopic Effect of Hot Water and Supercritical Carbon Dioxide Fluid Extract of Persimmon (Diospyros kaki) Peels vol.47, pp.3, 2015, https://doi.org/10.9721/KJFST.2015.47.3.394
  2. Synergistic Anti-inflammatory Effect of Rosmarinic Acid and Luteolin in Lipopolysaccharide-Stimulated RAW264.7 Macrophage Cells vol.47, pp.1, 2015, https://doi.org/10.9721/KJFST.2015.47.1.119