DOI QR코드

DOI QR Code

Implementation of a Non-Invasive Sensor System for Differentiating Human Motions on a Bed

침대에서 동작 식별을 위한 비침습식 센서 시스템의 구현

  • Cho, Seung Ho (Division of Computer and Media Information Engineering, Kangnam University)
  • 조승호 (강남대학교 컴퓨터미디어정보공학부)
  • Received : 2014.01.22
  • Accepted : 2014.02.06
  • Published : 2014.02.28

Abstract

In this paper, we propose an efficient dynamic workload balancing strategy which improves the performance of high-performance computing system. The key idea of this dynamic workload balancing strategy is to minimize execution time of each job and to maximize the system throughput by effectively using system resource such as CPU, memory. Also, this strategy dynamically allocates job by considering demanded memory size of executing job and workload status of each node. If an overload node occurs due to allocated job, the proposed scheme migrates job, executing in overload nodes, to another free nodes and reduces the waiting time and execution time of job by balancing workload of each node. Through simulation, we show that the proposed dynamic workload balancing strategy based on CPU, memory improves the performance of high-performance computing system compared to previous strategies.

본 논문에서는 아무런 불편함이 없이 사람이 하루 중 가장 많은 시간을 보내는 침대에서 사람 동작의 관찰을 가능하게 하는 비침습식 센서 시스템을 제안한다. 제안된 센서 시스템은 얇고 넓은 필름 형태의 압전센서, 신호처리 보드, 그리고 데이터 수집 프로그램으로 구성된다. 사람 동작에 따라 힘이 가해진 압전 센서는 전압 신호를 생성하게 되고, 이 신호는 제안 시스템에 의해 수집, 전처리, 변환된다. 최종 단계에서 FFT 결과는 k-NN 분류기에 의해 식별된다. 침대에서 10,000개 사람 동작을 식별하는 실험을 수행하였고, 약 89.4%의 정인식률을 달성하였다. 실험 결과는 제안된 시스템이 침대를 사용하는 사람이 정상인인지 중풍환자인지 식별할 능력이 있음을 시사한다. 본 논문의 성과는 침대 사용자의 동작을 지속적으로 관찰 가능하게 한다는 점이다. 이러한 지속적인 관찰은 동작 또는 수면 패턴에서 건강상 이상 징후를 탐지하는데 매우 유용하게 활용될 것이다.

Keywords

References

  1. Taemin Song, "u-Health: Current Status and Policy," Korea Institute of Health and Social Affairs(KIHASA), Republic of Korea, 2011.
  2. http://www.tekscan.com/force-sensitive-bed-monitoring
  3. A Gaddam, S. C. Mukhopadhyay and G. Sen Gupta. "Necessity of a Bed-sensor in a Smart Digital Home to Care for Elder-People", Sensors, IEEE. pp.1340-1343. Oct. 2008.
  4. A. Gaddam, K. Kaur, G. Sen Gupta and S. C. Mukhopadhyay, "Determination of Sleep Quality of Inhabitant in a Smart Home using an Intelligent Bed Sensing System," IEEE Instrumentation and Measurement Technology Conference(I2MTC), 2010.
  5. M. Holtzman, D. Townsend, R. Goubran and F. Knoefel, "Validation of Pressure Sensors for Physiological Monitoring in Home Environments", 2010 IEEE International Workshop on Medical Measurements and Applications Proceedings(MeMeA), pp.38-42, Canada, 2010.
  6. Marko Borazio, Kristof Van Laerhoven. "Combining Wearable and Environmental Sensing into an Unobtrusive Tool for Long-Term Sleep Studies", IHI '12 Proceedings of the 2nd ACM SIGHIT International Health Informatics Symposium, 2012.
  7. Seung Ho Cho, Phillips, W.D., Ravi Sankar and Bonghee Moon, "A State Preserving Approach to Recognizing Human Behavior using Wireless Infrared and Vibration Sensors," Proc. of IEEE Southeastcon, pp.1-6, Mar. 2012.
  8. Gautschi, G. "Piezoelectric sensorics", Springer Berlin, Heidelberg, New York. 2002.
  9. EMFIT, http://www.emfit.com/
  10. http://www.analog.com/en/processors-dsp/ analog-microcontrollers/aduc7026/products/product.html
  11. http://www.ti.com/product/lm358
  12. http://www.keil.com/arm/mdk.asp
  13. http://www.oracle.com/technetwork/java/index -jsp-141752.html and http://www.jfree.org/jfreechart/
  14. Private communication
  15. Ya-lun Chou,"Statistical Analysis", Holt International, section 17.9, 1975.
  16. Hyounkyo Oh, et. al., "Preprocessing in a Non-invasive Sensor System," Proc. of KIPS Spring Conference, 20(1), pp.83-85, Republic of Korea, 2013.
  17. J. W. Cooley and J. W. Tukey, "An Algorithm for the Machine Calculation of Complex Fourier Series," Mathematics of Computation, 19, pp.297-301, 1965. https://doi.org/10.1090/S0025-5718-1965-0178586-1
  18. T. Cover and P. Hart, "Nearest Neighbor Pattern Classification," IEEE Transactions on Information Theory 13(1), pp. 21-27, Jan. 1967. https://doi.org/10.1109/TIT.1967.1053964
  19. Katz S, et al., "Studies of Illness in the Aged. The Index of ADL: A standardized measure of biological and psychosocial function," JAMA 185(12), pp. 914-919, Sep. 1963. https://doi.org/10.1001/jama.1963.03060120024016
  20. Hamilton BB, Granger CV, Sherwin FS et al., "A uniform national data system for medical rehabilitation," Rehabilitation Outcomes: analysis and measurement, Brookes Pub., pp.137-147, 1987.