Abstract
This thesis proposes CBIRS/TB method that uses a tablet's color distribution information and form distinctive in content-based search. CBIRS/TB can avoid misuses and improper tablet uses by conducting content-based search in commonly prescribed tablets. The existing FE-CBIRS system is limited to recognizing only the image of color and shape of the tablet, that leads to applying insufficient form-specific information. While CBIRS/TB utilizes average, standard deviation, hue and saturation of each tablets in color, brightness, and contrast, FE-CBIRS has partial-sphere application problem; only applying the typical color of the tablet. Also, in case of the shape-specific-information, Invariant Moment is mainly used for the extracted partial-spheres. This causes delayed processing time and accuracy problems. Therefore, to improve this setback, this thesis indexed color-specific-information of the extracted images into categorized classification for improved search speed and accuracy.
본 논문은 일상적으로 많이 복용되는 알약의 오남용을 막기 위해 알약 대한 정보를 내용기반 인식을 통해 검색하고자 하는데, 이때 알약의 색 특징 정보와 모양 특징 정보를 이용하여 내용기반 검색을 하는 CBIRS/TB를 제안한다. 기존 FE-CBIRS에서는 색상과 모양에 대한 정보를 추출하여 영상을 구분하는 특징정보로 적용하는 문제점이 있다. 즉 검색시 적용하는 물체의 색상 특징 정보는 색상, 채도, 명도의 각각에 대한 평균, 표준편차, 왜도를 사용하며 부분영역을 특징정보로 적용하는 경우 대표색상만을 적용하는 문제점이 있다. 또한 모양특징정보의 경우 추출된 부분영역들에 대한 불변모멘트가 주로 사용한다. 이로 인한 처리시간의 문제, 정확성의 문제점이 있다. 따라서 본 논문에서 이를 개선하기 위한 방법으로 추출된 영상의 색상 특징정보들을 클래스별로 구분하여 인덱싱하여 검색속도와 정확도를 향상시켰다.