
Journal of The Korea Society of Computer and Information

Vol. 19, No. 2, February 2014

www.ksci.re.kr

http://dx.doi.org/10.9708/jksci.2014.19.2.077

MusicXML 기반의 악보 편집기 개발

1)칸나지브울라*, 이정철*

Development of a Music Score Editor based on MusicXML

Najeeb Ullah Khan*, Jung-Chul Lee*

요 약

과거작곡가들은피아노, 바이올린, 기타, 플롯, 드럼과같은고전적악기나일반적인도구들을이용하여작곡하

였다. 그러나 디지털 기술의 발전으로 많은 소프트웨어 응용 프로그램이 개발되었으며 이제 음악가들은 개인용 컴

퓨터를 이용하여 곡들을 제작할 수 있게 되었다. NIFF, SMDL, 그리고 MIDI와 같은 다양한 악보 표현 형식이

제안되었으나 MIDI 형식이 성공적으로 사용되어 왔다. 최근에는 MusicXML 형식이 컴퓨터 음악을 표현하는 사

실상 표준으로 부상하였다. 본 논문에서는 MusicXML 형식의 구조에 대한 개요를 기술하고 C# 언어로

MusicXML 기반악보편집소프트웨어를구현하는방법을제안한다. 본논문에서제안하는방법을이용하여악보

편집 소프트웨어를를 구현함으로써 구현의 효율성을 보였으며 활용 가능성을 확인하였다.

▸Keywords :MusicXML, 악보 편집기, 기보

Abstract

In the past composers used to make music with classical instruments such as piano, violin,

guitar, flute, drums, and other well-known tools. With the advent of digital technology many

software programs were developed which allow musicians to compose tunes using personal

computers. Many file formats were introduced such as NIFF, SMDL and MIDI but none besides

MIDI has been successful. Recently MusicXML has emerged as a de-facto standard for the

computer representation of music. This paper presents a brief description of the structure of the

MusicXML format and describes the development of a music score editor based on MusicXML. We

implemented a MusicXML-based score editing software using C# language and a feasibility test

showed the efficiency of our proposed method.

▸Keywords : MusicXML, Score Editor, Music Notation

∙제1저자 : 나집 울라한 ∙교신저자 : 이정철
∙투고일: 2013. 12. 24, 심사일 :2014. 1. 21, 게재확정일 : 2014. 2. 12.
* 울산대학교 전기공학부(School of Electrical Engineering, University of Ulsan)



78 Journal of The Korea Society of Computer and Information February 2014

I. Introduction

With the advent of digital technology, many

commercial tools have been developed for the

electronic composition and production of music.

Notation editing softwares for professional

publishing such as Sibelius and Finale use their own

proprietary file formats for the representation of

music. Conventionally MIDI was used as an

interchange format between these proprietary

formats but commercial score editors such as the one

mentioned above use about 300 music symbols while

MIDI is able to represent about 40 elements[1].

Thus interchange between these softwares used to

be a problem. Programs for scanning music scores

were able to work only with one proprietary format

e.g. scores scanned with SmartScore could only be

exported to Finale. Sheet Music available on the

internet was also limited to Portable Document

Format PDF or to their proprietary formats such as

Sunhawk SOLERO and MusicNotes. In the past

many attempts have been made to develop a

standard music notation format for the interchange

of music between these softwares such as Notation

Interchange File Format NIFF and Standard Music

Description Language SMDL.

NIFF integrates the visual and logical

organization of the music into one model. For

example the pitch of a note is represented by its

position on the staff rather than on a number or

alphabet such as a ‘C’. Such a format is not suitable

for applications such as sequencing. The emergence

of markup languages such as the SGML lead to the

development of music interchange languages based

on the markup languages. The Standard Music

Description Language SDML was the first markup

language for music. SMDL was so complex that none

of the popular commercial softwares adopted it and

thus it failed as a music interchange format.

Attempts to develop XML based formats were made

such as MNML, MusiML, MusiXML and Wedelmusic

but none of them succeeded.

Recently MusicXML has emerged as a standard

for the interchange of music among notation

programs. MusicXML was developed by Recordare

LLC in 2000. MusicXML is based on MuseData and

Humdrum file format. Currently MusicXML is

supported by more than 160 music softwares. The

Dolet plug-in can be used to import and export

MusicXML files to Finale and Sibelius. The purpose

of this paper is twofold. First to give a detailed

description of MusicXML and second to describe the

development of a music score editor based on

MusicXML format.

An introduction to MusicXML can be found in [2],

[3] and [4] with descriptions of sample MusicXML

files and applications of MusicXML in musical

notation, analysis and performance applications. [5]

explains the facts behind the success of MusicXML

in becoming a de-facto standard for music notation

interchange and distribution. Music analysis such as

distribution of note durations and analysis of

correlation between pitch and duration in a music

score using Document Object Model DOM and

XQuery are described in [6] and [7].

A complete reference of the MusicXML standard

explaining each element of MusicXML can be found

on the MusicXML website[8]. However no published

work is available which describes the overall

structure of MusicXML. The MusicXML XSDs are

large enough to be analysed easily. This paper

describes the overall structure of MusicXML version

3.0 in detail highlighting the relationships of the

most commonly used elements of MusicXML.

There are many commercial and a few

open-source music score editors available that

supports MusicXML such as MuseScore. However

very little published work is available on the

development of music score editors. In [9], the

authors have developed a MusicXML based music

score reader for display of score on a Tablet PC for

the visually impaired Musicians. [10] also describes

sheet music display on an android Tablet PC using



MusicXML 기반의 악보 편집기 개발 79

MusicXML. [11] describes Museflash, a web based

music score editor developed using Macromedia

Flash. However MuseFlash support an inadequate

number of symbols even for an armature musician.

Museflash supports only notes from whole to eighth

note a flat, and a sharp. It lacks even the basic

music elements such as rests, dots and other basic

music notation symbols. In this paper we describe

the development of a music score editor based on the

Windows Presentation Foundation WPF which is

Microsoft’s next generation graphics interface. Our

music score editor is capable of creating, displaying,

editing and playing back music using the MusicXML

file format supporting a modest number of music

notation elements.

The rest of the paper is organized as follows. A

description of the MusicXML standard is given in

section II. Section III describes the implementation

details of the score editor followed by experimental

results in section IV. Conclusion is given in section V.

II. MusicXML

1. Introduction

MusicXML is a digital sheet music interchange

and distribution format for common Western music

notation based on eXtensible Markup Language

XML. It was developed by Recordare LLC. The goal

of MusicXML is to interchange data between

different music software programs such as score

editors, optical music recognition softwares and

digital music stands etc. The XML schema Definition

for MusicXML is freely available. MusicXML is

based on two existing music file formats; MuseData

which is a general purpose, software independent

file format and Humdrum file format designed for

research, analysis and music studies[2]. These two

file formats have large repertoires available. Basing

MusicXML on these formats gives it a strong

technical foundation. MusicXML’s element and

attribute names are based on the English-language

musical terms used in the USA[12]. MusicXML is

based on XML and thus is internet friendly and non

binary format. Although raw MusicXML files are

large, they compress well. MusicXML files 7 times

larger than Musedata files are only 2 times larger

when compressed[6]. Since XML tools are available

for every major platform, MusicXML application

developer has the freedom to chose the development

platform of choice.

2. Structure

Music notation can be divided into three domains;

the logical domain which includes the undelying

musical representation such as melodies, rythms etc,

the visual domain which includes the visual

elements such as the stem directions and fonts etc,

and the performance domain which includes things

such as tempo and loudness of music etc. MusicXML

integrate these three domains in such a way that

the internal representation is not affected by the

visual and performance domain settings. MusicXML

uses XML elements for the logical domain while

attributes for the visual and performance domain.

This is shown in figure 1. Dedicated elements for

visual <print> and performance <sound> domains are

also included where the attributes are not sufficient.

The Humdrum format on which the design of

MusicXML is based, represents music files as a two

dimensional plane with succession of events (notes

in the same part) proceeds vertically down and

concurrent events (corresponding notes in different

parts) extends horizontally[13] as shown in figure 2.

For this reason MusicXML have two kind of basic

structures for music score, one is the timewise score

and the other is partwise score as shown in figure 3.



80 Journal of The Korea Society of Computer and Information February 2014

Fig. 1. Domains of Music Notation

Successive events

concurrent

events

A K V etc

B L W etc

C M X etc

D N Y etc

etc etc etc

Fig. 2. Humdrum Format

Fig. 3. The two structures of MusicXML score

In the timewise score the measure is the primary

element and parts are contained within each

measure. In the partwise score the part is the

primary element and measures are contained within

each part. Automatic convertors are available for the

two structures and the contents of both the

structures is the same thus we only describe the

partwise score in the coming discussion.

The root element of a partwise score is a

<score-partwise> element. It has a version attribute

which is the version of MusicXML the score complies

to. The <score-partwise> element contains meta data

about the score such as the titles, identification

(which include information such as the software

with which the score was created etc), it also

contain information regarding the default values for

the appearance of the score such as the staff size

and fonts etc. There is a credit element which

specifies typical information to be displayed on the

first page of a score. There is a partlist element

which enlists all the parts present in the score, it

also contains virtual instrument and other MIDI

related information for each of the part listed.

Finally in the partwise score, there are one or more

musical parts present sequentially. All the elements

in the Partwise score are optional except the partlist

and part elements. The root element of a partwise

score is shown in figure 4.

Fig. 4. The Partwise Score

Fig. 5. Measures within Parts

Each part contains measures as shown in figure

5, which in turn contain music data. A measure can

contain a variety of music data. Table 1 shows the

elements representing the music data inside a

measure with brief descriptions. Describing all the

elements in detail is beyond the scope of this paper

and the interested reader is referred to the

MusicXML reference available at the MusicXML

website[8]. The note and attributes elements are

essential even for the simplest of music applications

and will be described in some detail.

A note is the most common music data in the

measure. The most common elements inside a note

element are shown in table 2 with brief descriptions.

The notation element contains elements for



MusicXML 기반의 악보 편집기 개발 81

representing graphical symbols associated with a

note such as ornaments, articulations, ties, slurs

and tuplets etc. The note also contain elements for

the representation of cue and grace notes and

information about stem directions and the

identification of the staff on which the note should

be placed in a multi-staff part such as a piano.

Fig. 6. Contents of attributes element

The attributes element is shown in figure 6. An

attributes element is placed inside a measure for

specifying information such as key and time

signatures, clef, and the unit for the duration

element of a note. In MusicXML, the duration of a

note or rest is specified by the number of divisions

for which the note will be played. The divisions

element in the attributes determine the number of

divisions per quarter note. Other information such

as the number of staffs, graphical details of the

staffs, measure styles and transposition of the part

to the concert pitch is also encoded in the attributes

element. The attribute element is optional and if the

current measure do not have an attribute element,

then the latest attributes specified will be

applicable.

Element Name Description

note Represents notes

attributes

Contains information that usually

change on measure boundaries such as

key and time signatures

forward Coordinates multiple voices in one part

backup Coordinates multiple voices in one part

direction
A musical indication not attached to a

specific note such as a rehearsal mark

harmony Represents harmony

figured bass Figured-bass notation

print General printing parameters

sound General playback parameters

barline Represents special barlines

grouping Used for analysis purposes

link Serves as an outgoing simple XLink

bookmark
Serves as target for an incoming simple

XLink

Table 1. Music data inside a measure

Element

Name
Description

type
Represents the type of note e.g half,

quarter

duration
the actual duration of time for which

the note will be played

dot Represents a dot

rest Indicates a rest

pitch
represents pitch as step octave and

alteration due to accidentals

accidental
Represents a graphical accidental e.g.

flat, sharp

chord
Represents that the present note is a

chord tone to the preceeding note

time

modification

represents changes in duration due to

tuplet notes

beam Represents beaming of the note

notations
represents a wide variety of graphical

notation elements e.g tied, slur etc

Lyric
Represents the lyric associated with the

note

Table 2. Common note element contents

3. Example

Figure 7 shows a simplified MusicXML file with a

partwise score containing a single part with one

measure and two notes. The corresponding music

notation is shown in figure 8. The partwise score

contains an identification element followed by the

partlist. The score contains only one part which

contains only one measure. The measure contains an



82 Journal of The Korea Society of Computer and Information February 2014

Fig. 8. Representation of MusicXML file in figure 7

attributes element and two notes. A value of 4 for

the divisions in the attributes element means there

are four divisions in a quarter note so a quarter note

has a duration of 4 divisions, a half note has a

duration of 8 divisions and an eighth note has a

duration of 2 divisions. Inside the Key element the

fifths element specifies the number of accidentals in

the key signature. The flats are represented by a

negative number and the sharps are represented by

a positive number. In the example there are no flats

or sharps in the key signature thus the fifths

element is zero. The mode element specifies whether

the scale is major or minor. In the time element, the

beats element specifies the number of beats per

measure while the beat type element is used to

specify which note type constitutes a beat. The

value 4 signifies a quarter note. The clef sign is the

type of clef while the line number determines at

which line of the staff the clef is placed counting

from the bottom line of the staff. The listing shows a

clef sign of G placed at the second staff line.

Figure 8 shows a duration of 12 divisions for the

first note. The type element specifies that this is a

half note which according to the defined divisions in

attributes should have a duration of 8 divisions.

This addition of 4 divisions is because of the reason

that this is a dotted note. The dot adds half of its

original duration (4) to its duration (8) resulting in

a value of 12. The dot is specified by an empty dot

element. The second note in figure 7 is a quarter

note with a sharp accidental.

Fig. 7. MusicXML example file



MusicXML 기반의 악보 편집기 개발 83

Symbol Description

Notes whole to 32nd

Rests whole to 32nd

dot single

Accidental Flat, sharp, natural

Lyrics Yes

Slur Yes

Tie Yes

Clefs G, F, C

Time sign Yes

Key sign Yes

Table 3. Symbols

III. Implementation

Music notation involves a lot of symbols.

Although MusicXML represents common western

music notation from the seventeenth century

onwards, it has more than 400 elements. Only the

most commonly used symbols shown in table 3 were

selected for the music score editor.

A music score editor or reader involves heavy use

of custom graphics (such as displaying shapes for

slurs, beams, ties etc). In contrast to just displaying

music, score editors involve user interaction (a staff

line is not just a graphic shape but should respond

to a user click). The score editor was implemented

in Microsoft C#.Net. There are two options available

for Graphical user interfaces in C#; one is Windows

Forms and the other is Windows Presentation

Foundation WPF. Windows Forms provides a lot of

easy to use controls such as buttons and textboxes

etc. It also provides GDI+ graphics, which is based

on Windows Graphics Device Interface. GDI+

contains classes to create graphics, draw text, and

manipulate graphical images as objects[14]. Pixels

are used as the units in Windows Forms and thus

size is dependent on the display device resolution.

The core of WPF is a resolution-independent and

vector-based rendering engine that is built to take

advantage of modern graphics hardware. WPF

extends the core with a comprehensive set of

WPF WinForms

Graphics DirectX GDI

Units Device Independent Pixels

Scalable Yes No

Shapes Interactive Static

Browser

Hosting
Yes No

Table 4. WinForms Vs WPF

application-development features that include

Extensible Application Markup Language (XAML),

controls, data binding, layout, 2-D and 3-D

graphics, animation, styles, templates, documents,

media, text, and typography[15]. The shape objects

in WPF such as lines, elipses etc are interactive i.e.

they have events (such as mouse button click events

etc). A comparison of Windows Forms and WPF is

given in table 4. A music score editor involves

interactive graphics which should be zoom-able as

well. It turns out that WPF is the ideal choice for

such an application. Based on this discussion we

have chosen WPF as the platform for the

development of the music score editor.

Figure 9 shows the different modules used in the

music score editor. Each module consists of one or

more classes.

Fig. 9. Music Score Editor Modules



84 Journal of The Korea Society of Computer and Information February 2014

1. Data Structure

To develop a score editor based on MusicXML, we

first need to be able to parse MusicXML files.

Microsoft .Net provides support for reading and

writing XML document using the Document Object

Model DOM. Although the DOM approach is very

flexible conforming to the schema of MusicXML is a

difficult task when writing new MusicXML files. An

Alternate method which utilizes the XML

serialization can be used to serialize and deserialize

C# objects to XML and XML into C# objects. This

method requires availability of a class whose objects

we will convert to MusicXML and vice versa.

Microsoft Visual Studio provides a tool called XSD

Tool to convert the XML Schema Definition file into

a class[16]. Since MusicXML XSD is freely

available, we used the XSD tool to generate the C#

classes corresponding to the elements of MusicXML.

This process is shown in figure 10 below. However,

there was one problem with the data types in the

automatically generated classes. The sequence of

elements in MusicXML XSD was translated to C#

array type which cannot be dynamically resized;

however for score editor we need a dynamic data

structure such as a list. The problem discussed

above can be solved by using a java library named

ProxyMusic. ProxyMusic provides a binding between

Java objects in memory and data formatted

according to MusicXML[17]. This library solves the

data structure problems and contains all the classes

corresponding to MusicXML elements. ProxyMusic

provides utility methods for reading and writing

MusicXML files.

Fig. 10. MusicXML Reading and Writting using C# XML
serialization

To use ProxyMusic (being a java library) in C# we

used the IKVM.NET tool. IKVM.NET is an

implementation of Java for Mono and the Microsoft

.NET Framework. It includes a Java Virtual

Machine implemented in .NET [18]. There are two

methods the IKVM.NET can be used. ProxyMusic is

statically compiled to a DLL and is used directly in

C#. Since the classes and methods in ProxyMusic

has inputs and outputs of Java data types thus the

Java classes and data types are used dynamically for

input output operations with ProxyMusic.

The ProxyMusic since generated from the

MusicXML XSD has the same nested structure as

MusicXML. This makes it very difficult to use

ProxyMusic directly for the internal representation

of notes and measures in the score editor. Figure 11

shows an example of accessing information about the

first note in the first measure of a part. As can be

seen in figure 11, the measure contains various

music data objects such as notes, attributes etc, the

list of these objects is accessed by the function

getNoteOrBackupOrForward(). So there is no

explicit indexing for notes in a measure using

ProxyMusic. We search for the first occurrence of a

note object in the list and then access its different

properties.

Fig. 11. ProxyMusic Example



MusicXML 기반의 악보 편집기 개발 85

Fig. 12. Class for Attributes Element

Many of the elements in MusicXML and

consequently in ProxyMusic are optional and thus

before reading the properties of an element, we first

need to check if the properties are present or not.

For example in a note there may or may not be a

duration property and we may need to determine the

duration of the note based on the divisions and note

type. For the music score editor we need an indexed

data structure with some level of uniformity.

Developing such a data structure allowed us to

separate the content of MusicXML from the display

aspects of the music score editor. Several C# classes

were written each representing the important

properties of elements such as the score itself, the

measures within the score, the notes and attributes

within the measure. Figure 12 shows the class to

represent the <attributes> element of MusicXML.

Classes were developed to read these properties from

ProxyMusic data structure (ReadDS.cs), create new

elements based on the given properties

(CreateDS.cs) and edit the properties of the existing

elements (EditDS.cs).

A class was created for checking and correcting

the score for errors if there are more notes than

allowed by the time signature in a measure.

2. Display

WPF uses an automatic layout system using

panels, such as the Grid panel in which child

controls are positioned by rows and columns, the

StackPanel in which child controls are stacked

either vertically or horizontally, the WrapPanel in

which the child controls are positioned in

left-to-right order and wrapped to the next line

when there are more controls on the current line

than space allows and the Canvas in which child

controls provide their own layout[15]. To display the

different elements of the music score and at the

same time make them editable, we have adopted a

layered approach to display the score.

Figure 13 shows the different panels to display

the score. Inside the root Grid there are two rows

containing the ribbon control for the user interaction

and the ScrollViewer. The ViewBox inside the

ScrollViewer contains all the graphic data of the

music score. The ViewBox can scale its child element

when it’s size is changed, thus ViewBox provide us

the zooming functionality for the score while the

ScrollViewer allows us to scroll the score. A vertical

StackPanel is used as the panel for displaying the

staffs. Above which a WrapPanel is used for the

display of notes, rests and other associated symbols

such as dots and accidentals. A third layer that is a

Canvas, is used to display the inter-note symbols

such as the beams, ties and slurs etc. To display the

music symbols, we used the Bach Musicological

Font[19] which is a TrueType Font. Bach font do

not represent the pitch information of the notes thus

the vertical position of each note is controled by the

pitch value of the note.

Fig. 13. GUI Architecture



86 Journal of The Korea Society of Computer and Information February 2014

However, with different clef signs, the names of

the staff lines changes for example the top line of

staff with a G clef is an “F” but with a C clef it

correspond to a “G”. This positioning of notes is

performed by the GUIPara class.

3. User Interaction

The music score editor uses the Ribbon Control

for user commands rather than the traditional menu

bar and toolbars. The ribbon is a command bar that

organizes the features of an application into a series

of tabs at the top of the application window. The

ribbon user interface (UI) increases discoverability

of features and functions, enables quicker learning

Figure 14. Creating a new score

Figure 15. A new score displayed

of the application, and makes users feel more in

control of experience with the application[20-22].

Figure 14 shows the window for creating a new

music score. Figure 15 shows the music score editor

with a new score opened. The ribbon control has two

tabs. Home and Insert tab. Home tab contains

buttons for operations such as creating a new score,

opening an existing MusicXML file and saving a

score to MusicXML file as well as zooming and

playback operations. The Insert tab contains buttons

for notes, rests and other symbols as well as for

editing these symbols. Event handlers were used to

respond to user actions such as entering new notes,

editing and deleting the existing ones etc. Each of

the actions first makes the changes to the

underlying data structure and then to the display.

Currently only mouse events are implemented. Notes

are created by selecting the note symbol from the

Insert Tab in the ribbon control and clicking the

desired staff line. Each of the staff line has its

associated event handler which identifies the staff

line clicked. Using the staff line clicked, the selected

note type, the clef sign and the time signature, the

properties for the note are generated and added to

the ProxyMusic data structure and the display is

updated.

The playback class uses the Windows Multimedia

API winmm to playback the notes. The playback class

has methods to extract pitch, duration and velocity

information from MusicXML score and play it.

IV. Results

We implemented a music score editor based on

MusicXML 3.0 using visual C# windows WPF on PC.

Figure 16 shows a MusicXML file displayed by our

music score editor. The music socre editor formats

the music according to the rules of music notation.

Each staff line starts with the clef sign followed by

the key signature(if any). The number of measures

per staff depends on the notes in the measures. As

can be seen in figure 16, the first two staffs contains

5 measures each while the third staff contain 4



MusicXML 기반의 악보 편집기 개발 87

measures. The same file displayed using the

MuseScore editor is shown in figure 17. Figure 16

has better appearance as compared to figure 17,

however it lacks certain symbols such as the up and

down bows. The spacing between notes in figure 16

is more uniform as compared to that of figure 17.

To demonstrate the creation of MusicXML file and

the editing capabilities of the score editor, figure 18

shows a score with four notes added, followed by

figure 19 in which the first note in the measure is

deleted. Figure 20 finally shows the insertion of a

half note after the eighth note. Parts of the

MusicXML files for figures 18, 19, 20 are shown in

figures 21, 22, 23 respectively.

Figure 16. Displaying score using the music score editor

Figure 17. Displaying score using MuseScore

Figure 18. Notes added to the score

Figure 19. The first note deleted

Figure 20. A half note inserted after the eighth note



88 Journal of The Korea Society of Computer and Information February 2014

Figure 21. MusicXML file made by the score editor for
the score shown in figure 18

Figure 22. MusicXML file made by the score editor for the
score shown in figure 19



MusicXML 기반의 악보 편집기 개발 89

Figure 23. MusicXML file made by the score editor for the
score shown in figure 20

V. Conclusion

MusicXML has emerged as a de-facto standard for

music notation interchange and distribution. We

have provided a broad overview of the MusicXML

elements. The ease of using ProxyMusic rather than

a parser using DOM is demonstrated. The use of

WPF for the development of music score editor

turned out to be a scalable solution. The automatic

layout system of WPF allows for efficient editing as

opposed to the bitmap based approach in which the

whole music score must be repainted if a single note

is to be changed. Although the music score editor

has only the most commonly used symbols, it can

readily be extended given the complete coverage of

MusicXML by ProxyMusic and the power of WPF.

The support for multiple part scores as well as

advanced notation elements such as

articulations and ornaments will be added in a

future version. The score editor has enough

symbols to be used by researchers, amateur

musicians and educators.

VI. Acknowledgment

This work was supported by the National

Research Foundation of Korea (NRF) grant funded

by the Korea government (2011-0015125)

References

[1] P. Bellini and P. Nesi, "WEDELMUSIC format:

An XML music notation format for emerging

applications." Proc. WEDELMUSIC 2001, pp. 79 – 
86, Nov. 2001.

[2] S.Cunningham, "SuitabilityofMusicXMLasaFormat for

Computer Music Notation and Interchange." Proceedings

of IADIS Applied Computing 2004 International

Conference, Lisbon, Portugal. pp. III-7, 2004.



90 Journal of The Korea Society of Computer and Information February 2014

[3] M. Good, “MusicXML in Commercial Applications.”

Music Analysis East and West: Computing in

Musicology 14, edited by W. B. Hewlett and E.

Selfridge-Field, MIT Press, pp. 9-20. 2006,

[4] M.Good, “MusicXML: An Internet-Friendly Format for

Sheet Music.” Proceedings of XML 2001 Conference,

pp. 9-14, Dec, 2001

[5] M. Good, “Lessons from the Adoption of MusicXML

as an Interchange Standard.” Proceedings of XML

2006 Conference, pp. 1-13, Dec. 2006

[6] M. Good, “MusicXMLinPractice: Issues inTranslation

and Analysis.” Proceedings of First International

Conference MAX 2002, pp. 47-54, Sep. 2002

[7] M. Good. "MusicXML for notation and analysis."

The virtual score: representation, retrieval,

restoration, edited by W. B. Hewlett and E.

Selfridge-Field, MIT Press, pp. 113-124, 2001

[8] “MusicXML XSD Schema Reference” available at

http://www.musicxml.com/

[9] L. Housley, T. Lynch, R, Ramnath,P.F. Rogers, J.

and Ramanathan, J, "Implementation Considerations

in Enabling Visually Impaired Musicians to Read

Sheet Music Using a Tablet." Proceedings of IEEE

COMPSAC, pp. 678 - 683, Jul. 2013.

[10] L.L. Housley, DynamicGenerationofMusical Notation

fromMusicXMLInput onanAndroidTablet. Doctoral

Dissertation. Ohio State University, 2012.

[11] Cunningham, Stuart, et al. "Web-basedMusicNotation

Editing." Proceedings of IADIS- International

Conference on WWW/Internet, Murcia, Spain. 2006.

[12] M.D. Good, "MusicXML: The First Decade."

Structuring Music Through Markup Language:

Designs and Architectures, MakeMusic, Inc., pp.

187-192, 2012

[13] “The Humdrum Syntax” available at http://www.

music-cog.ohio-state.edu/Humdrum/guide05.html

[14] “Windows Forms Overview” available at http://

msdn.microsoft.com/en-us/library/8bxxy49h(v

=vs.110).aspx

[15] “Introduction to WPF” available at http://msdn.

microsoft.com/en-us/library/aa970268(v=vs.11

0).aspx

[16] “XML Schema Definition Tool (Xsd.exe)” available

at http://msdn.microsoft.com/en-us/library/

x6c1kb0s(v=vs.110).aspx

[17] ProxyMusic https://proxymusic.kenai.com/

[18] J. Frijters, "IKVM, an implementation of Java

for Mono and the. NET Framework," Available

at http://www.ikvm.net

[19] Yo Tomita. “Bach, Musicological Font” available

at http://www.mu.qub.ac.uk/tomita/bachfont/

[20] “Ribbon (WPF)” available at http://msdn.

microsoft.com/en-us/library/

[21] G.J. Lim and J.C. Lee, “An Electronic Keyboard

Instrument Using PC MIDI and USB Interface,”

Journal of The Korean Society of Computer and

Information, vol.16, no.11, p85-93, Nov. 2011.

[22] J.Y. Kim, J.C. Lee, and H.S. Jun, “Development

of PC based flute performance learning

software,” Journal of The Korean Society of

Computer and Information, vol.18, no.2,

p95-105, Feb. 2013.

저 자 소 개

Najeeb Ullah Khan

2012년 : International Islamic

University, Islamabad 학사

2013~현재: 울산대학교

전기공학부석사과정

관심분야: Digital signal processing,

Speech recognition/synthesis,

Email : electronicengr@gmail.com

이 정 철

1984년 : 서울대학교

전자공학과공학사

1988년 : 서울대학교

전자공학과공학석사

1998년 : 서울대학교

전자공학과공학박사

현 재: 울산대학교

전기공학부부교수

관심분야 : 디지털신호처리,

음성신호처리, 음성합성

Email : jungclee@ulsan.ac.kr


