滋陰降火湯이 Propylthiouracil(PTU)로 유발된 Rat의 갑상선기능저하증에 미치는 영향

대구한의대학교 부인과교실 김석중, 김동철

ABSTRACT

Effects of Jaeumkanghwa-tang on the Rat Hypothyroidism Induced by Propylthiouracil (PTU)

Seok-Jung Kim, Dong-Chul Kim Dept. of genecology, College of Oriental Medicine, Daegu Haany University

Objectives: This study was to evaluate the effect of *Jaeumkanghwa-tang* (JEKHT) on the propylthiouracil (PTU)-induced rat hypothyroidism.

Methods: Six groups, each of 8 rats per group were used in the present study – intact vehicle control, PTU control, Levothyroxine (LT₄), JEKHT 500, 250 and 125 mg/kg treated groups. JEKHT were administered once a day for 42 days as an oral dose of 500, 250 and 125 mg/kg, and hypothyroidism was induced by daily subcutaneous treatment of PTU 10 mg/kg for 28 days. The changes on the body and organ weight, serum hormone and lipid profiles, liver and testis antioxidant defense factors were observed with histopathology of organs. Results were compared with LT₄ 0.5 mg/kg intraperitoneally treated rats in this experiment.

Results: PTU treatment, marked decrease of body weight, increases of thyroid weight, decreases of liver, testis, epididymis and prostate weights, decreases of serum Tri-iodothyronine (T₃), and Thyroxine (T₄) level with increase of serum Thyroid-stimulating hormone (TSH) level, decreases of serum testosterone and dihydrotestosterone (DHT) level with increases of serum Follicular stimulating hormone (FSH) level, increases of serum High density lipoprotein (HDL), decrease of triglyceride content, increase of serum Aspartate aminotransferase (AST) level, decreases of liver and testis antioxidant defense factors were observed. In addition, marked hyperplasia of follicular cells with decreases of follicular colloid contents and diameters was additionally demonstrated with the decrease of hepatocyte numbers per unit area due to hypertrophy of hepatocytes related to lipid droplet depositions, increase of a/oligospermatic epididymal tubules with epididymal atrophic changes, seminiferous tubular atrophy with decrease of stage I ~ II seminiferous tubules in testis, prostate tubular atrophic changes at histopathological inspections. However, these PTU induced hypothyroidism and related hepatic and male reproductive organ damages were favorably and dose-dependently inhibited by treatment of JEKHT 500, 250 and 125 mg/kg, and JEKHT also effectively regulated the PTU-induced abnormal antioxidant defense factor changes in the both liver and testis.

Conclusions: JEKHT 500, 250 and 125 mg/kg dose-dependently inhibited PTU-induced hypothyroidism and related liver and male reproductive organ damages in rats.

Key Words: Jaeumkanghwa-tang, Hypothyroidism, Levothyroxine, Propylthiouracil

Ⅰ. 서 론

갑상선기능저하증이란 갑상선호르몬의 부족으로 인해 말초조직의 대사가 저하 된 상태를 말한다. 갑상선기능저하증은 서서히 진행하므로 병기에 따라 증상이 다양하지만 전형적인 증상으로는 피로, 한불내성, 체중증가, 부종, 무력감, 기억 력감퇴, 변비, 근육통 등을 들 수 있다¹⁾. 특히, 갑상선기능저하증은 고프로락틴증 으로 배란장애를 유발하여 황체기 결함, 희발월경, 무월경 등의 월경 이상을 초 래하고, 임신부의 경우 자간전증, 태반조 기박리, 저체중아 출산, 사산 및 심부전, 빈혈, 산후출혈 등의 가능성을 높여 여 성의학에서 중요한 의미를 가진다²⁾.

갑상선기능저하증의 치료는 부족한 갑 상선호르몬을 외부에서 공급하여 보충해 주는 방법을 이용하지만 일생동안 약물을 복용해야 하는 문제점을 가질 뿐만 아니라, 주로 사용되는 Levothyroxine(LT4)은 급성 심근 경색이나 불안정성 협심증등의 허혈성 심질환의 위험성, 갑상선호르몬 요구량의 변화, LT4를 보충해도 호전 증상이 없는 등 여러 가지 문제점을 유발하다³⁾.

잡상선기능저하증은 한의학적으로 浮腫, 虚勞, 行遲, 語遲, 結陽證, 解顱 등과 관련이 깊은 질환으로 보고 있으며, 그원인은 주로 氣血不足, 脾腎陽虛, 命門火衰, 心腎陽虛이며 치료는 補氣補血, 溫補脾腎, 溫補腎陽, 溫補心陽하는 大營煎, 右歸飲, 八味地黃丸, 十全大補湯, 補中益氣湯 등이 응용되고 있다⁴⁾. 갑상선기능저하증에 대한 실험적 연구는 眞武湯⁵⁾, 當歸四逆湯⁶⁾. 大營煎⁷⁾ 등의 복합처방에

대한 연구, 淫羊藿⁸⁾, 肉蓯蓉⁹⁾, 柴胡¹⁰⁾ 등 의 단일 약재에 대한 연구, 人蔘水鍼¹¹⁾, 鹿 茸水鍼¹²⁾의 약침에 대한 연구가 있었다.

滋陰降火湯은 ≪萬病回春≫¹³⁾에 "治陰 虚火動 發熱咳嗽 吐痰喘急 盗汗□乾 此方與六味地黃丸相兼服之 大補虛勞神效"라하여 처음 언급된 처방으로, 陰虛火動으로 潮熱, 盗汗이 있으며 痰이 粘稠한 乾咳, 거무스름하고 枯燥한 피부, 변비의 경향이 치료의 목표가 된다. 현재까지 滋陰降火湯에 대해 불면증상의 개선효과¹⁴⁾, 알레르기성 염증반응 억제 효과¹⁵⁾, 면역활성 효과¹⁶⁾ 등이 보고되고 있다.

현재까지 大營煎을 제외하면 갑상선기 능저하증에 補陰劑을 이용한 연구가 부족한 실정이며, 滋陰降火湯이 갑상선 기능 이상에 대한 효과는 아직 알려진 바가 없다. 따라서 본 연구에서는 한의학에서 대표적인 補陰之劑인 滋陰降火湯의경구 투여가 propylthiouracil(PTU)로 유발된 rat의 갑상선기능저하증에 미치는영향을 관찰하였으며, 갑상선기능저하증 치료제로 사용되고 있는 LT4 복강 투여군과 비교하여 유의한 결과를 얻었기에보고하는 바이다.

Ⅱ. 실 험

1. 재 료

1) 약 물

한국식품의약품안전청의 승인 하에 Korean Good Manufacturing Practice (KGMP) 조건에서 생산한 보험약제인 滋陰降火湯(Hanzung Pharm. Co., Daejeon, Korea)을 구입하여 사용하였으며, 滋陰降火湯 1포 분량의 조성은 아래와 같다

(Table 1). 구입한 연갈색의 滋陰降火湯 분말은 4℃의 냉장고에 보관 후 실험에 사용하였으며, 용매인 증류수에 100 mg/ml 의 농도까지 비교적 잘 용해되었다. 또한 대조약물로 사용한 백색 분말의 LT₄(Sigma, St. Louise, MO, USA) 역시 -20℃의 냉장고에 보관 후 실험에 사용하였으며, 용매인 멸균 생리식염수에 0.25 mg/ml의 농도까지 비교적 잘 용해되었다.

Table 1. Composition of Jaeumkanghwa-tang (JEKHT) Used in This Study

Korea	Herbs	Scientific names	Amounts
_name		Defending frames	(g)
大 勇	Zizyphi Fructus	Zizyphus jujuba var. inermis (Bunge) Rehder	1.67
天門名	Asparagi Tuber	Asparagus cochinchinensis (Lour.) Merr.	1.33
熟地責	Rehmanniae Radix Preparata	Rehmannia glutinosa Libosch.	1.33
當	7 Angelicae Gigantis Radix	Angelica gigas Nakai	1.18
白力	Atractylodis Rhizoma Alba	Atractylodes ovata (Thunberger) DC.	0.98
白芍藥	Paeoniae Radix	Paeonia lactiflora Pall.	0.93
麥門名	Liriopis Tuber	Liriope platyphylla Wang et Tang	0.80
陳月	Citri Unshii Pericarpium	Citrus unshiu S.Marcov.	0.60
知 日	Anemarrhenae Rhizoma	Anemarrhena asphodeloides Bunge	0.50
生地責	Rehmanniae Radix Crudus	Rehmannia glutinosa var. purpurea Makino	0.40
甘茸	Glycyrrhizae Radix	Glycyrrhiza uralensis Fisch	0.36
黄析	Phellodendri Cortex	Phellodendron amurense Ruprecht	0.29
生	Zingiberis Rhizoma Crudus	Zingiber officinale Roscoe	0.26
	Total	13 types	10.63

2) 동 물

132 마리의 수컷 SPF.VAF Outbred Crl: CD [Sprague-Dawley] rat(6-wk old upon receipt, OrientBio, Seungnam, Korea)을 15일간의 순화과정을 거쳐 실험에 사용하였으며, 순화과정 및 실험 전 기간 동안 20~25℃의 온도와 40~45%의 습도가 조절된 사육실에서 polycarbonate 사육상자에 4마리씩 수용하여 사육하였고, 명암 주기(light: dark cycle)는 12시간 주기로 조절하였으며, 사료(Samyang, Korea)와 음수는 자유롭게 공급하였다. 순화과정 후 체중(Average: 284.88±10.83g; ranged in 269.00~316.00g)이 일정한실험동물을 선별하여, 군당 8마리씩, 총

6개 군으로 구분하여, 실험에 사용하였다. 모든 실험동물은 滋陰降火湯 또는 용매 투여 시작일 및 최종 부검일 18시간 전 각각 절식을 실시하였으며(이 기간에도 음수는 자유롭게 공급하였다), picric acid 로 개체를 식별하였다. 본 동물실험은 대구 한의대학교 동물실험윤리위원회(IACUC) 의 사전 승인을 받아 수행하였다(승인번호: DHU2013-019: ANNEX Ⅲ).

2. 방 법

1) 실험군 분리 및 약물의 투여

실험동물은 8마리씩 6그룹-정상 대조 군, PTU 대조군, LT₄ 투여군 및 세 가 지 용량(500, 250 및 125 mg/kg)의 滋陰 降火湯 투여군으로 구분하여 실험을 실시하였다(Table 2). 1000, 500 또는 250 mg의 滋陰降火湯을 각각 10 ml의 멸균 증류수에 용해시켜, kg 당 5 ml의 용량으로 존데(zonde)가 부착된 5 ml 주사기를 이용하여, 매일 1회씩 PTU 투여 시작 2주전부터 42일 동안 강제 경구 투여하였으며, 조 등¹⁰⁾의 방법에 따라, 2.5

mg의 LT4를 10 ml의 생리 식염수에 용해 시켜, kg 당 2 ml의 용량으로 PTU투여 시작일로부터 28일간 매일 복강 주사하였다. 한편 정상 및 PTU 대조군에서는 동일한 용량의 멸균 증류수를 滋陰降火湯 추출물 투여군과 동일한 기간 동안 경구 투여하였다.

Table 2. Experimental Groups

Groups	Treatment				
Intact control group	Saline treated instead of PTU, and distilled water				
intact control group	orally administered instead of the drug				
PTU control group	PTU subcutaneously treated, and distilled water				
r i O control group	orally administered instead of the drug				
LT4 treated group	PTU subcutaneously treated and LT ₄ 0.5 mg/kg				
L14 treated group	intraperitoneally administered				
JEKHT 500 mg/kg treated groups	PTU subcutaneously treated and JEKHT 500 mg/kg				
JEKHI Joo mg/kg treated groups	orally administered				
JEKHT 250 mg/kg treated groups	PTU subcutaneously treated and JEKHT 250 mg/kg				
JEKHI 250 Hig/kg treated groups	orally administered				
IEVIT 195 mg/kg treated groung	PTU subcutaneously treated and JEKHT 125 mg/kg				
JEKHT 125 mg/kg treated groups	orally administered				

2) 갑상선기능저하증의 유발

Mogulkoç 등¹⁷⁾의 방법에 따라 50 mg의 PTU(Sigma, St. Louise, MO, USA)를 10 메l생리 식염수에 용해시켜, kg 당2 메l의 용량으로 매일 1회씩, 28일간 매일 등쪽 경부 피하에 주사하여, 갑상선기능저하증을 유발하였다. 한편 정상 대조군에서는 PTU 대신 동일한 용량의 생리 식염수만 동일한 방법과 기간 동안 투여하였다.

3) 체중 측정

모든 실험동물의 체중을 滋陰降火湯 투여 시작 1일 전, 투여 시작일, 투여 7, 14 (PTU 및 LT₄ 투여 시작일), 21 28, 35, 41 및 42(최종 희생일)일 후에 automatic electronic balance(Precisa Instrument, Zuerich, Switzland)를 이용하여, 각각 측정하였다. 사료섭취에 따른 체중 변화를 최소화하기 위해 滋陰降火湯 투여시작일 및 최종 희생일에 모든 실험동물은 18시간 정도 절식을 실시하였고, 실험 시작시의 개체 차이에 의한 체중 변화를 최소화하기 위해 2주간의 滋陰降火湯 전투여기간, 4주간의 PTU 투여기간 및 6주간의 실험 전 기간 동안의 체중 변화량인 체중 증가량(body weight gains)을 아래의 공식 [1]을 이용하여 각각 측정하였다.

EQUATION [1]. Body Weight Gains (g)Test material pretreatment periods

= Body weight gains of 2 weeks of test material pretreatment periods(Body weights at 14 days after start of test material administration-body weights at start of test material administration)

- PTU treatment periods = Body weight gains of 4 weeks of PTU treatment(Body weights at sacrifice-body weight at start of PTU treatment: 14 days after test material administration)
- Throughout the whole experimental periods = Body weight gains of 6 weeks of experiments(Body weight at sacrifice -body weight at start of test material administration: 2 weeks before start of PTU treatment)

4) 장기 중량의 측정

최종 희생일에 모든 실험동물의 좌측 갑상선, 간, 고환 및 부고환, 전립선을 적출·분리한 다음 중량을 측정하여 절대중량(absolute wet-weight)으로 하였으며, 체중의 변화에 수반된 이차적 변화를 최소화하기 위해 체중에 대한 절대중량의비율인 상대중량을 아래의 공식 [2]를 이용하여 각각 산출하였다.

EQUATION [2]. Relative Organ Weights (%) = (Absolute organ weights/Body weights at sacrifice)×100

5) 채혈 및 혈청의 분리

최종 희생일에 모든 실험동물을 18시간 이상 절식 후 대정맥(vena cava)에서 각각 6 ml의 혈액을 채취하였으며, 상은에서 1시간 정도 방치한 다음 3,000 rpm으로 원심분리하여 혈청을 분리하였고, 분석 전까지 -150℃의 초저온냉장고(Deep freezer: Sanyo, Tokyo, Japan)에 보관하였다.

6) 혈청 중 호르몬 함량의 측정

Radioimmunoassay¹⁸⁾에 준하여 혈청 중 Thyroid-stimulating hormone(TSH), Tri-iodothyronine(T₃), Thyroxine(T₄), testosterone, Dihydrotestosterone(DHT) 및 Follicular stimulating hormone(FSH) 함량을 각각 Coat A count Total TSH, T₃, T₄, testosterone, DHT 및 FSH kit (DPC, Danville, CA, USA)을 사용하여, Gamma count Cobra II(Packard Co., Downers Grove, IL, USA)로 pg/ml, ng/ml 또는 µg/ml 단위로 각각 측정하였다.

7) 혈청 중 지질 함량의 측정

자동혈액분석장치(Toshiba 200FR, Toshiba, Tokyo, Japan)를 이용하여 혈청 중 total cholesterol, High density lipoprotein(HDL), Low density lipoprotein(LDL) 및 triglyceride 함량을 각각 mg/dl 단위로 측정하였다.

8) 혈청 중 Aspartate aminotransferase (AST) 및 Alanine aminotransferase (ALT) 함량의 측정

자동혈액분석장치(Toshiba 200 FR, Japan) 를 이용하여 혈청 중 AST 및 ALT 함량 을 각각 IU/ ℓ 단위로 측정하였다.

9) 항산화 방어 인자의 측정

Kavutcu 등¹⁹⁾의 방법에 따라, 적출한 간 및 고환의 일부 조직을 얼음으로 냉각 한 후 0.01 M Tris-HCl(pH 7.4)을 이용 하여 homogenize 한 다음 800×g으로 10 분간 원심분리하여 상층액을 분리하고, 다시 12,000×g으로 15분간 원심분리하여 mitochondrial fraction을 준비하였다. 이 후 단백질 함량은 Lowry 등²⁰⁾의 방법으 로 bovine serum albumin을 standard로 이용하여 측정하였다. 지질 과산화 정도 (lipid peroxidation)는 Jamall과 Smith²¹⁾ 의 방법으로 2-thiobarbituric acid를 이

용하여, 흡광도 525 nm에서 측정하여 malondialdehyde(MDA) nM/mg protein 단위로 측정하였다. 또한 H₂O₂ 함량은 Pick과 Keisari²²⁾ 방법에 따라 horseradish peroxidase(Sigma, St. Louise, MO, USA)와 phenol red(Wako, Osaka, Japan)를 이용 하여, nM/mg protein 단위로 spectrophotometry 로 측정하였으며, Aebi²³⁾의 방법에 따라, H₂O₂ 분해능을 이용하여 catalase(CAT) 함량을 흡광도 240 nm에서 측정하였다. 즉, pH 7.0, 온도 25℃하에서 1 µmol의 H₂O₂를 분해하는데 필요한 CAT를 1 unit(U) 으로 정의하여, U/mg protein의 단위로 CAT의 활성을 평가하였다. Superoxide dismutase(SOD) 활성은 Nishikimi 등²⁴⁾의 nicotinamide adenine dinucleotide(reduced)phenazine methosulphate-nitroblue-tetrazolium 억제 반응을 변형 시킨 Kakkar 등²⁵⁾의 방 법을 이용하여 평가하였다. SOD 1 unit 는 상온(25±2℃)에서 1분 동안 formazan 형성을 50% 억제하는 농도로 정의하여, U/mg protein 단위로 측정하였다.

10) 조직병리

최종 희생일에 좌측 갑상선, 간, 고환 및 부고환, 전립선 조직을 적출하여 세포로 절단하고 10% 중성포르말린에 18시간 이상 고정시킨 다음, 탈수를 거쳐파라핀 포매 후 3μ 에의 조직 절편을 제작하여 Hematoxylin & eosin(H&E) 염색을 실시한 후, 광학현미경 하에서 관찰하였다. 또한 보다 명확한 조직병리학적 변화를 관찰하기 위하여 세포 절단한 갑상선 전체 두께(μ m/central regions) 및 평균 갑상선 여포 직경(μ m/follicle)을 각각 automated image analysis process (iSolution FL ver 9.1, i-solution Inc., Quebec, Canada)를 이용하여 측정

하였으며, Subudhi 등²⁶⁾과 같은 방법으로 단위 면적당 간세포의 수를 automated image analysis process 이용하여 nuclei numbers/mm²단위로 산출하였다. 고환내 정세관의 평균 직경과 도관내 성숙한 정 자를 함유한 stage [~ [²⁷⁾의 정세관이 차 지하는 비율을 각각 μm/tubule 및 %/mm² 단위로 측정하였으며, 부고환 두부(head) 의 평균 두께 및 정자수의 감소를 나타내 는 부고환 세관(Aspermatogina/oligospermato -gonia tubules)의 비율 역시 mm/head region 및 %/mm²단위로 측정하였고, 전 립선 도관 상피의 평균 두께(μm/tubule) 및 위축(atrophic changes) 전립선 도관 의 비율(%/mm²) 역시 automated image analysis process를 이용하여 각각 측정 하였다.

11) 통계처리

모든 수치는 평균±표준편차로 표시하 였으며, 다중비교검증을 이용하여 통계 처리를 실시하였고, 분산동질성을 Levene test를 실시하여 검증하였다. 등분산일 경우 one way ANOVA test를 실시한 다 음 least-significant differences(LSD) test 로 사후 검증을 실시하여 군 간의 유의 성을 측정하였다. 비등분산일 경우 비모 수 검증인 Kruskal-Wallis H test를 실 시하여 유의성이 인정된 경우에는 Mann-Whitney U test를 실시하여 군 간의 유 의성을 검증하였다. 모든 통계처리는 SPSS for Windows (Release 14.0K, SPSS Inc., Chicago, IL, USA)를 이용하여 평가하 였으며, p-value가 0.05 이하인 경우 통 계적 유의성을 인정하였다.

PTU 유발 갑상선기능저하증에 대한 滋陰降火湯 또는 LT_4 의 유효한 효과를 보다 명확히 하기 위하여, 滋陰降火湯 또 는 LT₄ 투여군과 PTU 대조군과의 percent change를 아래의 공식 [3]을 이용하여 측정하였다. 또한 PTU에 의한 갑상선기 능저하증 및 관련 간 및 생식기 장애의 유발 정도를 보다 명확히 하기 위해 정상 대조군과 PTU 대조군과의 percent change를 아래의 공식 [4]를 이용하여 각각 측정하였다.

EQUATION [3]. Percentage Changes as Compared with Intact Control (%)

= ((Data of PTU control-Data of intact vehicle control)/Data of intact vehicle control)×100

EQUATION [4]. Percentage Changes as Compared with PTU Control (%)

=((Data of administered groups-Data of PTU control)/Data of PTU control)×100

Ⅲ. 결 과

1. 체중의 변화

PTU 대조군에서는 PTU 투여 3주

후부터 정상 대조군에 비해 체중이 유의하게 감소하기 시작하여(p<0.01), 4주간의 PTU 투여기간 및 6주간의 실험 전기간 동안의 체중 증가량이 -125.10%, -44.67%의 변화를 나타내어 유의하게 감소하였다(p<0.01). 한편 LT4 투여군에서는 PTU 투여 3주 후부터 정상 대조군에비해 체중이 유의하게 증가하기 시작하여(p<0.01, p<0.05) PTU 투여기간 및 실험 전 기간 동안의 체중 증가량이 PTU대조군에비해 225.39%, 39.21%의 변화를 나타내어 유의하게 증가하였다(p<0.01).

한편 500 및 250 mg/kg의 滋陰降火湯 투여군에서도 PTU 대조군에 비해 PTU 투여 3주후부터 체중이 유의하게 증가하기 시작하였고(p<0.05), 125 mg/kg의 滋陰降火湯 투여군에서도 PTU 투여 27일 및 28일 후에 PTU 대조군에 비해 체중이 유의하게 증가하였다(p<0.05). 따라서 생용량의 모든 滋陰降火湯 투여군에서 PTU 대조군에 비해 체중 증가량은 PTU 투여기간 및 실험 전 기간 동안 유의하게 증가하였다(p<0.01, p<0.05)(Table 3).

Table 3. Changes on the Body Weight Gains after LT_4 and Jaeumkanghwa-tang (JEKHT) Treatment in PTU-treated Rats

		Body weight gains during				
Grou	ps	2 weeks of	4 weeks of	6 weeks of		
		JEKHT pretreatment	PTU treatment	total experiments		
Controls	Intact	104.13±9.39	61.25±18.39	165.38±22.68		
Controls	PTU	106.88 ± 7.08	-15.38 ± 3.78^{a}	91.50 ± 6.02^{d}		
LT ₄ treated group	0.5 mg/kg	108.25±12.54	19.13 ± 8.48^{ab}	127.38±14.35 ^{de}		
JEKHT	500 mg/kg	102.75 ± 11.89	7.88 ± 12.38^{ab}	$120.63\pm10.20^{\text{de}}$		
treated groups	250 mg/kg	108.25 ± 16.06	5.50 ± 4.93^{ab}	$113.75 \pm 19.61^{\mathrm{df}}$		
meated groups	125 mg/kg	106.38 ± 12.77	-0.63 ± 10.57^{ac}	105.75 ± 6.65^{df}		

a (p(0.01) as compared with intact control by LSD test.

b (p $\langle 0.01 \rangle$) and c (p $\langle 0.05 \rangle$) as compared with PTU control by LSD test.

d (p(0.01)) as compared with intact control by MW test.

e ($p\langle 0.01\rangle$) and f ($p\langle 0.05\rangle$) as compared with PTU control by MW test.

2. 장기 중량의 변화

PTU 대조군에서는 정상 대조군에 비해 절대 및 상대 갑상선 중량이 각각 331.65, 426.26%의 변화를 나타내어 유의하게 증가하였으나(p(0.01), LT4 및 滋陰降火湯 500, 250, 125 mg/kg 투여군에서는 PTU 대조군에 비해 절대 갑상선중량이 -72.43, -56.89, -43.40, -30.79%, 상대 갑상선 중량이 74.68, -59.77, -46.69, -33.57%의 변화를 나타내어 유의하게 감소하였다(p(0.01)(Fig. 1).

PTU 대조군에서는 정상 대조군에 비해 절대 및 상대 간 중량이 각각 -38.34, -25.26%의 변화를 나타내어 유의하게 감소하였으나(p<0.01), LT4 및 滋陰降火湯 500, 250, 125 mg/kg 투여군에서는 PTU 대조군에 비해 절대 간 중량이 51.27, 37.07, 25.49, 15.39%, 상대 간 중량이 38.91, 28.89, 18.77, 11.06%의 변화를 나타내어 유의하게 증가하였다(p<0.01, p<0.05)(Fig. 1).

PTU 대조군에서는 정상 대조군에 비해 절대 및 상대 고환의 중량이 각각-22.84, -6.06%의 변화를 나타내어 유의하게 감소하였으나(p<0.01), 500, 250, 125 mg/kg의 滋陰降火湯 투여군에서는 PTU 대조군에 비해 절대 고환 중량이 22.34, 17.65, 12.46%, 상대 고환 중량이 14.95, 11.23, 8.17%의 변화를 나타내어 투여 용량 의존적으로 유의하게 증가하였다(p<0.01, p<0.05). 한편 LT4 투여군에서는 PTU 대조군에 비해 절대 및 상대 고환 중량이 -0.58, -9.03%의 변화를 나타내어 상대중량만 유의하게 감소하는 것으로 나

타났다(p(0.05)(Fig. 1).

PTU 대조군에서는 정상 대조군에 비 해 절대 및 상대 부고환 중량이 -30.47. -15.45%의 변화를 나타내어 유의하게 감 소하였으나(p<0.01), 滋陰降火湯 500 및 250 mg/kg 투여군에서는 PTU 대조군에 비해 절대 부고환 중량이 26.62, 18.58%, 상대 부고환 중량이 18.97, 12.29%의 변 화를 나타내어 투여 용량 의존적으로 유 의하게 증가하였다(p<0.01, p<0.05). 滋陰 降火湯 125 mg/kg 투여군에서는 PTU 대조군에 비해 절대 및 상대 부고환 중량 이 14.55, 10.20%의 변화를 나타내어 절대 중량만 유의하게 증가하는 것으로 나타났 다(p(0.05). 한편, LT₄ 투여군에서는 PTU 대조군에 비해 절대 및 상대 부고환 중량 이 8.51, -0.40%의 변화를 나타내어 유의 한 변화는 관찰되지 않았다(Fig. 1).

PTU 대조군에서는 정상 대조군에 비해 절대 및 상대 전립선 중량은 -49.43, -38.56%의 변화를 나타내어 유의하게 감소하였으나(p<0.01), 滋陰降火湯 500, 250, 125 mg/kg 투여군에서는 PTU 대조군에비해 절대 전립선 중량은 60.98, 44.27, 29.24%, 상대 전립선 중량은 51.19, 36.08, 24.38%의 변화를 나타내어 투여 용량 의존적으로 유의하게 증가하였다(p<0.01, p<0.05). 한편 LT4 투여군에서는 PTU 대조군에비해 절대 및 상대 전립선 중량이 -1.51, -9.60%의 변화를 나타내어 경미하게 감소하였으나 유의성은 인정되지 않았다(Fig. 1).

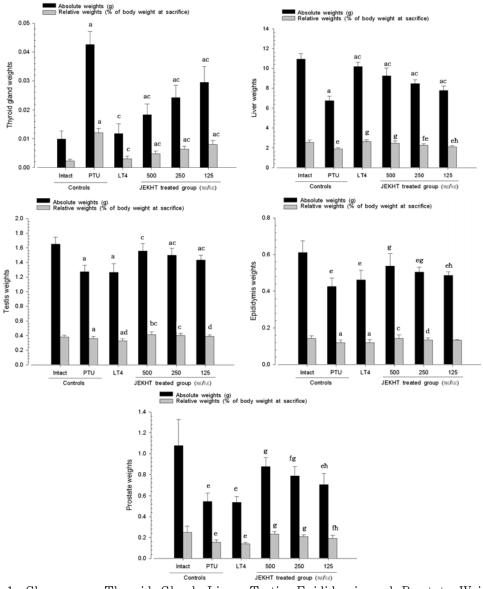


Fig. 1. Changes on Thyroid Gland, Liver, Testis, Epididymis and Prostate Weights after LT₄ and Jaeumkanghwa-tang (JEKHT) Treatment in PTU-treated Rats.

- a (p $\langle 0.01\rangle$) and b (p $\langle 0.05\rangle$) as compared with intact control by LSD test.
- c (p $\langle 0.01 \rangle$) and d (p $\langle 0.05 \rangle$) as compared with PTU control by LSD test.
- e (p $\langle 0.01 \rangle$) and f (p $\langle 0.05 \rangle$) as compared with intact control by MW test.
- g (p $\langle 0.01 \rangle$) and h (p $\langle 0.05 \rangle$) as compared with PTU control by MW test.

3. 혈청 중 호르몬 함량의 변화

PTU 대조군에서는 정상 대조군에 비해 혈청 중 T_3 및 T_4 함량은 -75.07, -80.57%의 변화를 나타내어 유의하게 감소하였 고(p<0.01), TSH 함량은 287.84%의 변화를 나타내어 유의하게 증가하였다(p<0.01). 滋陰降火湯 500, 250, 125 mg/kg 투여군에서는 PTU 대조군에 비해 T₃ 함량은

89.55, 45.52, 29.17%, T₄ 함량은 194.67, 128.00, 84.00%의 변화를 나타내어 투여 용량 의존적으로 유의하게 증가하였고(p<0.01, p<0.05), TSH 함량은 -44.96, -33.44, -21.40%의 변화를 나타내어 유의하게 감소하였다 (p<0.01, p<0.05).

한편 LT₄ 투여군에서도 PTU 대조군에 비해 T₃, T₄, TSH 함량이 각각 2.31, 598.67, -79.39%의 변화를 나타내어 TSH 함량은 유의하게 감소하였고(p<0.01), T₄ 함량은 유의하게 증가하였으나(p<0.01), T₃ 함량 변화는 유의성이 인정되지 않았다 (Table 4).

PTU 대조군에서는 정상 대조군에 비해 혈청 중 testosterone 및 DHT 함량은 -32.31, -22.10%의 변화를 나타내어 유의하게 감소하였고(p<0.01), FSH 함량은 50.34%의 변화를 나타내어 유의하게 증가하였다(p<0.01). 滋陰降火湯 500, 250, 125 mg/kg 투여군에서는 PTU 대조군에비해 testosterone 함량은 32.95, 26.70, 18.18%, DHT 함량은 24.85, 19.88, 15.69%의 변화를 나타내어 유의하게 증가하였고(p<0.01, p<0.05), FSH 함량은 -20.84, -16.40, -11.89%의 변화를 나타내어 유의하게 감소하였다(p<0.01, p<0.05).

한편 LT₄ 투여군에서는 PTU 대조군에 비해 testosterone, DHT, FSH 함량이 -10.80, -16.18, 9.63의 변화를 나타내어 DHT 함량은 유의하게 감소하였으나 (p<0.05) testosterone 함량은 유의한 변화가 없었으며, FSH 함량이 유의하게 증

가하였다(p<0.05)(Table 4).

4. 혈청 성분 함량의 변화

PTU 대조군에서는 정상 대조군에 비해 혈청 중 HDL은 84.98%의 변화를 나타내 어 유의하게 증가하였고(p<0.01), triglyceride 은 -57.76%의 변화를 나타내어 유의하게 감소하였다(p<0.01), LT4 및 滋陰降火湯 500, 250, 125 mg/kg 투여군에서는 PTU 대조군에 비해 혈청 중 HDL은 -43.17. -43.55, -27.74, -17.26%의 변화를 나타내 어 유의하게 감소하였고(p<0.01, p<0.05), triglyceride 함량은 123.38, 89.01, 67.84, 38.67%의 변화를 나타내어 유의하게 증 가하였다(p<0.01, p<0.05). 한편 PTU 투 여에 의해 혈청 중 total cholesterol 및 LDL의 유의한 변화는 인정되지 않았으 며, LT4 및 세 용량의 滋陰降火湯 투여 군에서도 PTU 대조군에 비해 혈청 중 total cholesterol 및 LDL 함량의 유의한 변화는 인정되지 않았다(Table 5).

PTU 대조군에서는 정상 대조군에 비해 혈청 중 AST 함량은 76.04%의 변화를 나타내어 유의하게 증가하였으나(p<0.01), LT4 및 滋陰降火湯 500, 250, 125 mg/kg 투여군에서는 PTU 대조군에 비해 -23.36, -31.02, -22.58, -15.71%의 변화를 나타내어 PTU 투여에 의한 AST 함량의 증가가 각각 유의하게 억제되는 것으로 나타났다(p<0.01). 한편 PTU 투여에 의해 혈청 중 ALT 함량은 유의한 변화가 나타나지 않았다(Fig. 2).

Table 4. Changes on the Serum Thyroid Hormone, Testicular Hormone and Lipid Levels after LT₄ and Jaeumkanghwa-tang (JEKHT) Treatment in PTU-treated Rats

	Serum hormone levels							
Groups	T_3	T_4	TSH	Testosterone	DHT	FSH		
	(ng/ml)	(μg/ml)	(ng/ml)	(ng/ml)	(pg/ml)	(ng/ml)		
Controls								
Intact	73.90 ± 6.70	4.83 ± 0.73	14.42 ± 2.41	3.25 ± 0.39	164.63±11.27	11.05 ± 1.63		
PTU	18.43 ± 4.35^{e}	0.94 ± 0.20^{e}	55.92±12.14 ^e	2.20 ± 0.28^{a}	128.25 ± 16.59^{a}	16.61 ± 1.26^{a}		
LT ₄ treated	group							
0.5 mg/kg	18.85 ± 3.76^{e}	6.55 ± 1.19^{ef}	11.53 ± 1.41^{ef}	1.96 ± 0.28^{a}	107.50±15.28 ^{ac}	18.21 ± 0.64^{ad}		
JEKHT trea	ted groups							
		2.76 ± 0.88^{ef}			160.13 ± 14.78^{c}			
250 mg/kg	26.81 ± 6.09^{ef}	2.14 ± 0.44^{ef}	37.22 ± 7.83^{ef}	2.79 ± 0.25^{ac}	153.75±12.16 ^c	13.89 ± 1.89^{ac}		
125 mg/kg	23.80 ± 3.89^{ef}	1.73 ± 0.52^{ef}	43.95 ± 3.62^{e}	2.60 ± 0.31^{ac}	148.38±11.65 ^{bc}	14.64±1.64 ^{ad}		

a (p $\langle 0.01\rangle$) and b (p $\langle 0.05\rangle$) as compared with intact control by LSD test.

Table 5. Changes on the Serum Lipid Levels after LT₄ and Jaeumkanghwa-tang (JEKHT) Treatment in PTU-treated Rats

Groups		Serum levels (mg/dl)					
Groups		Total cholesterol	LDL	\mathtt{HDL}	Triglyceride		
Controls	Intact	65.05±9.31	16.29±1.72	26.55±5.91	86.95±13.58		
Controls	PTU	72.01 ± 7.92	16.38 ± 1.34	49.11 ± 9.29^a	36.73 ± 4.74^{d}		
LT ₄ treated group 0.5 mg/kg		65.93 ± 7.22	15.53±1.49	27.91 ± 7.00^{b}	82.04±21.43 ^e		
IDIZIO	500 mg/kg	65.53±13.73	16.94±1.17	27.73±5.59 ^b	69.41±11.53 ^{de}		
JEKHT treated groups	250 mg/kg	67.48 ± 13.01	16.49 ± 1.41	35.49 ± 6.85^{ab}	61.64 ± 10.59^{de}		
ireated groups	125 mg/kg	66.71 ± 11.62	16.15±1.94	40.64±2.67 ^{ac}	50.93±12.97 ^{de}		

e (p(0.01) as compared with PTU control by MW test.

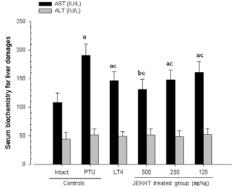


Fig. 2. Changes on Serum AST and Alanine Aminotransferase (ALT) Levels after LT₄ and

JEKHT Treatment in PTU-treated Rats. a (p $\langle 0.01 \rangle$) and b (p $\langle 0.05 \rangle$) as compared with intact control by LSD test.

c (p<0.01) as compared with PTU control by LSD test.

5. 항산화 방어 인자의 변화

간의 항산화 방어 인자의 변화를 살펴 보면, PTU 대조군에서는 정상 대조군에 비해 MDA 함량은 -14.57%의 변화를 나 타내어 경미하게 감소하였으나 유의성은 없었으며, H₂O₂ 및 SOD 활성은 97.64,

c (p(0.01) and d (p(0.05) as compared with PTU control by LSD test. e (p(0.01) as compared with intact control by MW test. f (p(0.01) as compared with PTU control by MW test.

a (p $\langle 0.01\rangle$) as compared with intact control by LSD test. b (p $\langle 0.01\rangle$) and c (p $\langle 0.05\rangle$) as compared with PTU control by LSD test. d (p $\langle 0.01\rangle$) as compared with intact control by MW test.

61.11%의 변화를 나타내어 유의하게 증가하였고(p<0.01), CAT 활성은 -57.80%의 변화를 나타내어 유의하게 감소하였다(p<0.01), LT4 및 滋陰降火湯 500, 250및 125 mg/kg 투여군에서도 PTU 대조군에 비해 H₂O₂ 함량은 -59.74, -30.94, -24.13, -19.41%, SOD 활성은 -41.98, -32.98, -25.64, -14.54%의 변화를 나타내어 유의하게 감소하였고(p<0.01, p<0.05), CAT 활성은 45.34, 76.25, 60.19, 40.50%의 변화를 나타내어 유의하게 증가하였다(p<0.01, p<0.05)(Table 6).

고환의 항산화 방어 인자의 변화를 살펴보면, PTU 대조군에서는 정상 대조군에 비해 MDA 함량은 -12.06%의 변화를 나타내어 경미하게 감소하였으나 유의성은 없었으며, H_2O_2 함량은 78.89%의 변화를 나타내어 유의하게 증가하였고(p<0.01),

SOD 및 CAT 활성은 -48.87, -45.45%의 변화를 나타내어 유의하게 감소하였다 (p<0.01). 滋陰降火湯 500, 250, 125 mg/kg 투여군에서는 PTU 대조군에 비해 SOD 활성은 65.49, 44.25, 30.09%, CAT 활성은 54.63, 37.04, 24.07%의 변화를 나타내어 투여 용량 의존적으로 유의하게 증가하였 으며(p<0.01, p<0.05), H₂O₂ 함량은 -42.42, -30.90, -20.51%의 변화를 나타내어 유의하 게 감소하였다(p<0.01, p<0.05), 한편 LT₄ 투여군에서는 PTU 대조군에 비해 H2O2 함량, SOD, CAT 활성은 각각 35.39, -34.51, -10.19%의 변화를 나타내어 H₂O₂ 함량은 유의하게 증가하였고(p<0.01, p<0.05), SOD 활성은 유의하게 감소하였고(p<0.01, p<0.05), 유의성은 인정되지 않았으나 CAT 활성 의 감소가 인정되었다(Table 6).

Table 6. Changes on the Liver and Testicular Antioxidant Defense Factors after LT₄ and Jaeumkanghwa-tang (JEKHT) Treatment in PTU-treated Rats

		Liver	contents		Testis contents			
Groups	MDA (nM/mg protein)	H ₂ O ₂ (nM/mg protein)	SOD (U/mg protein)	CAT (U/mg protein)	MDA (nM/mg protein)	H ₂ O ₂ (nM/mg protein)	SOD (U/mg protein)	CAT (U/mg protein)
Controls				_				
Intact	2.79 ± 0.45	105.88±18.21	51.75±10.48	343.00±65.28	5.43±0.71	24.88±3.87	27.63±3.50	24.75 ± 6.67
PTU	2.38±0.43	209.25±17.89 ^a	83.38 ± 10.04^{a}	144.75±19.71 ^e	4.78 ± 1.01	44.50 ± 9.24^{e}	14.13 ± 2.42^{a}	13.50±2.20 ^a
IT transfed								

LT₄ treated group

6. 조직병리학적 변화

PTU 대조군에서는 정상 대조군에 비해 갑상선 여포세포의 증식에 의한 비대소견이 여포 직경 및 여포내 colloid 물질의 감소와 함께 관찰되었으며, 갑상선

전체 두께는 71.26%의 변화를 나타내어 유의하게 증가하였고(p<0.01), 평균 갑상성 여포 직경은 -63.59%의 변화를 나타내어 유의하게 감소하였다(p<0.01). 한편 LT4 및 세 용량의 滋陰降火湯 투여군에

 $^{0.5 \}text{ mg/kg} \ 2.61 \pm 0.55 \ 84.25 \pm 13.29^{\text{bc}} \ 48.38 \pm 11.53^{\text{c}} \ 210.38 \pm 21.98^{\text{eg}} \ 5.37 \pm 1.05 \ 60.25 \pm 12.02^{\text{eh}} \ 9.25 \pm 2.05^{\text{ac}} \ 12.13 \pm 3.60^{\text{a}}$ JEKHT treated groups

 $^{500 \}text{ mg/kg } 2.59 \pm 0.71 \text{ } 144.50 \pm 10.84^{\text{ac}} \text{ } 55.88 \pm 8.22^{\text{c}} \text{ } 255.13 \pm 45.17^{\text{fg}} \text{ } 4.97 \pm 0.74 \text{ } 25.63 \pm 4.14^{\text{g}} \text{ } 23.38 \pm 3.50^{\text{bc}} \text{ } 20.88 \pm 3.98^{\text{c}} \text{ } 23.38 \pm 3.50^{\text{bc}} \text{ } 20.88 \pm 3.98^{\text{c}} \text{ } 20.88 \pm 3.98$

²⁵⁰ mg/kg 2.50 ± 0.33 158.75 ± 16.15^{ac} 62.00 ± 13.30^{c} 231.88 ± 41.03^{sg} 4.86 ± 0.81 30.75 ± 5.20^{fg} 20.38 ± 4.03^{ac} 18.50 ± 3.70^{ad} 125 mg/kg 2.53 ± 0.46 168.63 ± 19.95^{ac} 71.25 ± 10.00^{ad} 203.38 ± 31.48^{sg} 4.75 ± 1.13 35.38 ± 4.60^{eh} 18.38 ± 2.83^{ad} 16.75 ± 2.71^{a}

a (p $\langle 0.01 \rangle$) and b (p $\langle 0.05 \rangle$) as compared with intact control by LSD test.

c (p(0.01)) and d (p(0.05)) as compared with PTU control by LSD test.

e (p $\langle 0.01\rangle$) and f (p $\langle 0.05\rangle$) as compared with intact control by MW test.

g (p(0.01)) and h (p(0.05)) as compared with PTU control by MW test.

서는 이러한 PTU 투여에 의한 갑상선 조직의 증식 및 비대 소견이 현저히 억제되는 것으로 관찰되었다. 즉, LT4 및 滋陰降火湯 500, 250, 125 mg/kg 투여군에서는 PTU 대조군에 비해 갑상선 전체 두께는 -41.21, -35.08, -29.31, -17.37%의 변화를 나타내어 유의하게 감소하였고 (p<0.01), 평균 갑상선 여포 직경은 109.10, 99.27, 53.11, 32.56%의 변화를 나타내어 유의하게 증가하였다(p<0.01)(Fig. 3, 4).

PTU 대조군에서는 정상 대조군에 비해 지방 소적의 침윤에 의한 간세포의 종창으로 단위 면적당 간세포의 수가 -51.65%의 변화를 나타내어 유의하게 감소하였으나(p<0.01), LT4 및 세 용량의 滋陰降火湯 투여군에서는 PTU 투여에 의한 이러한 간세포의 종창 소견이 현저히 억제되는 것으로 관찰되었다. 즉, T4 및 滋陰降火湯 500, 250, 125 mg/kg 투여군에서는 PTU 대조군에 비해 단위 면적당 간세포 수가 33.26, 62.87, 41.45, 21.12%의 변화를 나타내어 유의하게 증가하였는데(p<0.01, p<0.05), 특히 滋陰降火湯 투여군에서는 투여 용량 의존적으로 유의하게 증가하였다(p<0.01, p<0.05)(Fig. 3, 4).

PTU 대조군에서는 정상 대조군에 비해 정세관의 위축 및 정세관내 정자 형성이 현저히 억제되는 것으로 관찰되었으며 정세관 평균 직경 및 성숙 정자를 나타내는 stage I~II 정세관 비율이 각각 -39.80, -64.80%의 변화를 나타내어 유의하게 감소하였다(p<0.01). 세 용량의 滋陰降火湯 투여군에서는 이러한 PTU 투여에 의한 고환의 위축 및 정세관내 정자 형성 억제소견이 현저히 억제되는 것으로 관찰되었다. 즉, 滋陰降火湯 500, 250, 125 mg/kg 투여군에서는 PTU 대조군에비해 정세관 평균 직경이 43.62, 26.18.

18.77%, stage I~Ⅱ 정세관 비율이 121.03, 104.10, 70.26%의 변화를 나타내어 투여 용량 의존적으로 유의하게 증가하였다(p<0.01). 한편 LT4 투여군에서는 PTU 대조군에비해서는 평균 정세관 직경이 10.46%의변화를 나타내어 유의하게 감소하였고 (p<0.05), stage I~Ⅱ 정세관 비율은 -40.00%의 변화를 나타내어 감소가 나타났으나유의성은 인정되지 않았다(Fig. 3, 4).

PTU 대조군에서는 정상 대조군에 비 해 부고환 두부의 평균 직경은 -14.19% 의 변화를 나타내어 유의하게 감소하였 고(p(0.01), 정자 감소증을 나타내는 부 고환 도관 비율은 487.50%의 변화를 나 타내어 유의하게 증가하였다(p(0.01). 세 용량의 滋陰降火湯 투여군에서는 이러한 PTU 투여에 의한 부고환 위축 및 도관 내 정자 감소 소견이 현저히 억제되는 것으 로 관찰되었다. 즉, 滋陰降火湯 500, 250, 125 mg/kg 투여군에서는 PTU 대조군에 비해 부고환 두부 평균 직경이 20.73, 11.12, 9.14%의 변화를 나타내어 유의하게 증 가하였고(p<0.01, p<0.05), 부고환 도관 비 율은 -61.09, -40.73, -29.48%의 변화를 나 타내어 유의하게 감소하였다(p<0.01, p<0.05). 한편 LT4 투여군에서는 PTU 대조군에 비해 부고환 두부의 평균 직경은 15.46% 의 변화를 나타내어 유의하게 증가하였 으나(p(0.01) 부고환 도관 비율도 30.40% 의 변화를 나타내어 유의하게 증가하는 것으로 나타났다(p<0.05)(Fig. 3, 4).

PTU 대조군에서는 정상 대조군에 비해 전립선 도관 상피의 평균 두께가 -70.30% 의 변화를 나타내어 유의하게 감소하였 고(p<0.01), 위축 소견을 나타내는 전립 선 도관 비율은 912.00%의 변화를 나타 내어 유의하게 증가하였다(p<0.01). 세 용량의 滋陰降火湯 투여군에서는 이러한 PTU 투여에 의한 전립선 위축 소견이 의해 현저히 억제되는 것으로 관찰되었다. 즉, 滋陰降火湯 500, 250, 125 mg/kg 투여군에서는 PTU 대조군에 비해 전립선도관 상피의 평균 두께가 132.36, 97.69, 30.69%의 변화를 나타내어 투여 용량 의존적으로 유의하게 증가하였고(p<0.01),

위축 도관 비율이 54.55, -39.13, -28.26%의 변화를 나타내어 유의하게 감소하였다(p<0.01). 한편 LT4 투여군에서는 PTU 대조군에 비해서 전립선 도관 상피의 평균두께가 -36.28%, 위축 도관 비율이 22.33%의 변화를 나타내어 유의하게 증가하였다(p<0.01)(Fig. 3, 4).

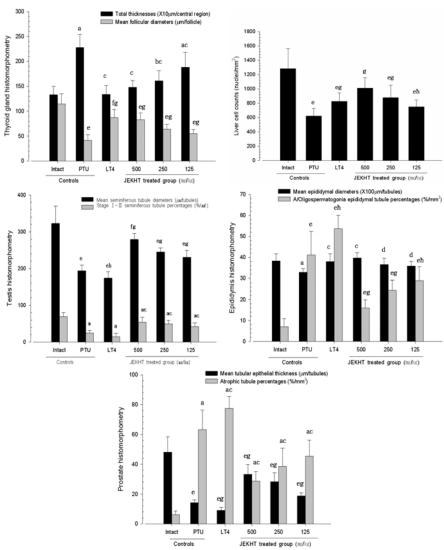


Fig. 3. Changes on the GHstomorphometry of Thyroid Gland, Liver, Testis, Epididymis and Prostate after LT₄ and Jaeumkanghwa-tang (JEKHT) Treatment in PTU-treated Rats. a $(p\langle 0.01\rangle)$ and b $(p\langle 0.05\rangle)$ as compared with DTII control by LSD test.

c (p $\langle 0.01 \rangle$) and d (p $\langle 0.05 \rangle$) as compared with PTU control by LSD test. e (p $\langle 0.01 \rangle$) and f (p $\langle 0.05 \rangle$) as compared with intact control by MW test.

g (p $\langle 0.01 \rangle$) and h (p $\langle 0.05 \rangle$) as compared with PTU control by MW test.

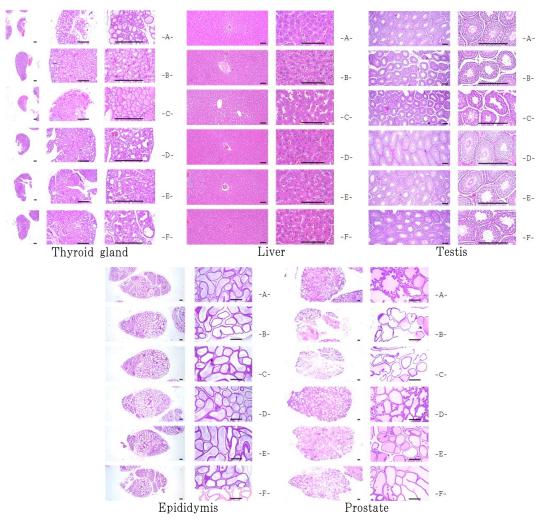


Fig. 4. Representative Thyroid Gland, Liver, Testis, Epididymis and Prostate Histopathological Images, Taken from Intact or PTU-treated Rats.

A = Intact control

B = PTU control

 $C = LT_4$ 0.5 mg/kg treated rats

D = JEKHT 500 mg/kg treated rats

E = JEKHT 250 mg/kg treated rats

F = JEKHT 125 mg/kg treated rats

All H&E stain

Scale bars(thyroid gland, testis, epididymis, prostate = $400 \mu m$, liver = $80 \mu m$)

Ⅳ.고 찰

갑상선기능저하증은 발병 시기에 따라 선천성, 후천성 갑상선기능저하증으로 나 누고, 병변 부위에 따라 일차성(원발성), 이차성(뇌하수체성), 삼차성(시상하부성) 갑상선기능저하증으로, 병의 중증 정도에 따라 명백한, 무증상 갑상선기능저하증으 로 나눈다¹⁾. 갑상선기능저하증의 유병률 은 현성 갑상선기능저하증의 경우 0.1~2%에 불과한 것으로 알려져 있으나, TSH만 상승한 불현성 갑상선기능저하증은 4~8.5%으로 비교적 높은 것으로 알려져 있다^{28,29)}. 특히 고령자의 경우 유병률이 현저히 증가하는 것으로 알려져 있어, 60세 이상의 여성들의 불현성 갑상선기능저하증은 21%에 이르고 있는 것으로 알려져 있다^{29,30)}.

갑상선기능저하증은 태아 및 신생아의 뇌와 골격의 성장 및 발육장애, 열 발생 저하로 체온하강 및 내한성감소, 모든 조직 내 대사율 감소로 인한 이화작용의 저하로 조직 내 대사산물의 축적이 유발 되고 모든 장기의 기능저하 현상이 나타 난다⁴⁾.

갑상선기능저하증의 진단은 특징적인 임상증상이 있을 경우에는 매우 용이하 지만 경미한 기능저하증이 있을 경우에 는 피곤하고, 행동이 느려지며, 전신에 부종감이 발생하며, 이러한 경미한 증상 이 있을 경우에는 신경증상, 빈혈, 위장 장애 혹은 간기능장애와 같은 진단을 받 기 쉽다. 갑상선기능저하증의 진단은 갑 상선호르몬의 혈중농도를 측정함으로써 가능하다. T₄가 먼저 감소한 다음 T₃가 감소하므로, 경미한 갑상선기능저하증일 경우에는 T₄만 감소하는 경우도 있다. 또한 갑상선기능저하증의 임상 소견은 진행 정도 및 중증도에 따라 아주 다양 하므로 진행된 심한 예를 제외하고 임상 증상 만으로 진단이 어려우나 초기부터 나타나는 체중증가, 근육통 및 비감, 추 위에 민감해지는 등의 증상이 있으므로 진단에 이용되고 있다^{4,31)}.

갑상선기능저하증의 치료는 부족한 갑 상선호르몬을 외부에서 공급하여 보충해 주는 것으로 주로 LT4를 사용하나, 여러 가지 문제점^{1,3)}이 유발되어, 최근 부작용이 적고 강력한 항산화 효과를 나타내는 천연물 유래의 갑상선기능저하증 치료제의 개발이 주목 받고 있는 실정이다^{12-14,46-54)}. 한의학에서 갑상선기능저하증에 대한 복합처방의 실험적 연구는 填陰을 보하는 大營煎¹¹⁾과 肝氣亢旺을 치료하는 抑肝散³²⁾의 연구를 제외하면 주로 補陽 개념의처방 위주로만 이루어졌으며, 補陰劑를이용한 연구는 미흡한 실정이다^{5,6,33-36)}.

滋陰降火湯은 《萬病回春》 13)에서 처음 언급된 처방으로, 처방 중 當歸・白芍藥・熟地黃은 補血하는 君藥이고, 生地黃・麥門冬・天門冬은 滋陰凉血하는 臣藥이다. 이들은 肝血과 肺・腎의 陰을 보해 陰火를 식힌다. 白朮・炙甘草・陳皮는 補氣健脾함으로써 소화력을 촉진하고, 知母는 淸熱瀉火・滋腎潤燥하며, 黃柏은 淸熱燥濕・瀉火解毒함으로써 腎의 虛熱을 제거하니, 이들은 모두 佐藥이다. 生薑・大棗는 胃를 조화한 使藥이다. 현재까지 滋陰降火湯에 대해 불면증상의 개선효과 14, 알레르기성 염증반응 억제 효과 15), 면역 활성 효과 16) 등이 보고되고 있으나 갑상선기능저하증에 대한 연구는 부족한 상태이다.

따라서 본 연구에서는 한의학에서 補陰劑인 滋陰降火湯의 경구 투여가 PTU로 유발된 rat의 갑상선기능저하증에 미치는 영향을 평가하고자 계획되었다. 500, 250 및 125 mg/kg의 滋陰降火湯을 PTU처리시작 2주전부터 6주간 투여하고, 체중, 갑상선·간·부고환 및 고환·전립선의중량, 혈중 갑상선호르몬(TSH, T3 및 T4)의 함량, 혈중 성 호르몬(testosterone, DHT및 FSH의 함량, 혈중 지질(total cholesterol, HDL, LDL 및 triglyceride)의 함량, 혈중 AST 및 ALT의 함량, 간 및 고환 항산화

방어 인자(MDA, H₂O₂, SOD 및 CAT를 갑상선·간·고환 및 부고환·전립선의 조 직병리학적 변화와 함께 관찰하였다. 본 실험에서의 결과는 갑상선기능저하증 치료제로 사용되고 있는 LT₄ 0.5 mg/kg 복 강 투여군과 비교하였다.

본 실험의 결과, 28일간의 연속적인 PTU 10 mg/kg의 피하 투여에 의해 체중 감 소, 갑상선 중량의 증가, 간・고환・부고환 및 전립선 중량의 감소, 혈청 중 T3·T4 함량의 감소와 TSH 함량의 증가, 혈청 중 testosterone · DHT 함량의 감소와 FSH 함량의 증가, 혈청 중 HDL 함량의 증가와 triglyceride 함량의 감소, 혈청 중 AST 함량의 증가, 간 및 고환의 항산화 방어 인자의 장애가 인정되었다. 또한 조직병 리학적으로 갑상선 여포세포의 증식에 의한 비대 소견, 단위 면적당 간세포의 수적 감소, 고환 정세관의 위축 및 stage I~Ⅱ 정세관 비율의 감소, 부고환 위축 과 부고환 도관의 수적 증가, 전립선 도 관의 위축이 인정되었다. 반면 세 용량의 滋陰降火湯 투여군에서는 이러한 PTU 유발 갑상선기능저하증의 체중의 감소, 갑상선 종대, 갑상선 및 성 호르몬의 감 소, 혈청 중 지질 함량의 변화 및 간과 생식기 손상소견이 투여 용량 의존적으 로 억제되는 것으로 나타났다. 또한 간 및 고환 항산화 방어 인자의 변화 역시 매우 효과적으로 조절되고, 조직병리학적 으로도 유의한 효과가 관찰되었다. 한편 LT4 투여에 의해 갑상선기능저하증 및 이와 관련된 간 손상은 현저히 억제 되 었으나 특히 고환내 항산화 방어 인자가 악화되었으며, 고환, 전립선 및 부고환, 즉 생식기의 손상은 더욱 악화되는 것으 로 관찰되었다.

일반적으로 갑상선기능저하증일 경우, 부족한 갑상선호르몬의 분비에 의해 대사가 지연되고, 이화작용이 감소하여 조직내 당단백질이 침착하므로 체중의 증가가 일어나는 것으로 알려져 있다³¹⁾. 그러나 갑상선기능저하증에 따른 체중의증가를 보상하기 위해 leptin의 분비가증가되어 식욕이 저하되고, 에너지 대사율이 증가되어 체중의 감소가 유발될 수도 있으며, PTU 유발 갑상선기능저하증을 유발 시킨 rat에서는 체중의 감소가유발되는 것으로 알려져 있다²⁶⁾.

본 실험 결과에서도 PTU 대조군에서는 유의성 있는 체중의 감소가 PTU 투여 3주 후부터 인정되기 시작하여, 4주간의 PTU 투여기간 및 6주간의 실험 전기간 동안의 체중 증가량 역시 정상 대조군에 비해 유의성 있게 감소하였다.한편 이러한 PTU 유발 체중 및 체중 증가량의 감소가 LT4 및 세 용량의 滋陰降火湯 투여에 의해 현저히 억제되어, 滋陰降火湯은 PTU 투여 갑상선기능저하증시 유발되는 체중의 감소를 매우 효과적으로 억제하는 것으로 판단된다.

혈청 TSH는 갑상선호르몬 생산 능력을 가장 예민하게 반영하기 때문에 임상증상이 없고 혈청 T₃ 및 T₄가 모두 정상인 무증상 갑상선기능저하증에서도 혈청 TSH는 증가한다¹⁾. 혈청 TSH가 10 μU/ml이상이면서 T₄의 감소, T₃의 정상 또는 감소를 갑상선기능저하증으로 진단한다^{1,28)}. PTU는 1-methyl-2-mercaptoimidazole(MMI)와 함께 갑상선 과산화효소에 의한 작용을 억제하여 갑상선호르몬 생성을 저해하고, thyroglobulin과 결합하여 구조를 변형시켜 갑상선호르몬 생성 장애를 초래하여 TSH의 증가와 함께 T₃ 및 T₄의

절대적 감소를 유발하고 비활동성 갑상 선 종대를 유발 한다^{1,37)}. 또한 조직 병리 학적으로 갑상선 여포세포의 증식에 의한 비대 소견과 여포 직경 및 여포내 colloid 물질의 감소를 특징적으로 나타낸다³⁸⁾.

본 실험의 결과에서도 PTU 대조군에 서 정상 대조군에 비해 절대 및 상대 갑 상선 중량이 유의하게 증가하였고, TSH 의 증가와 함께 T_3 및 T_4 의 감소가 유의 성 있게 나타났다. 중등도 갑상선기능저 하증에서는 혈청 T₃의 농도는 정상 또는 정상의 하한선으로 유지되지만, 중증 갑 상선기능저하증에서는 T₄의 생산이 더욱 감소하여 혈청 T3의 농도를 정상으로 유 지할 수 없게 되어 혈청 TSH는 현저하 게 증가하고 T_4 와 T_3 모두 감소한다 $^{1)}$. 따라서 본 실험의 모델에서 PTU를 이 용해 갑상선기능저하증이 성공적으로 유 도되었음을 알 수 있었다. 또한 갑상선 여포세포의 증식에 의한 비대, 여포 직 경 및 여포내 colloid 물질의 감소 등의 조직 병리학적 변화가 인정되었다.

세 용량의 滋陰降火湯 투여로 PTU 대조군에 비해 절대 및 상대 갑상선 중량이 유의성 있게 감소하였으며, TSH함량의 감소와 함께 T3 및 T4의 함량 증가가 유의성 있게 나타났다. 또한 조직병리학적으로 갑상선 전체 두께의 감소, 평균 갑상선 여포 직경의 증가가 유의하게 나타났다. 따라서 滋陰降火湯은 PTU에 의한 갑상선의 변화를 직접적으로 억제하는 것으로 판단되며, 이러한 갑상선변화는 滋陰降火湯 용량 의존적으로 관찰되어 투여된 滋陰降火湯의 용량에 비례하여 갑상선호르몬의 합성이 촉진된다고 추정할 수 있다.

간은 갑상선호르몬에 의해 영향을 받

는 대표적인 장기로, 갑상선기능저하증시 간 손상이 수반되는 것으로 알려져 있다³⁹⁾. AST와 ALT는 간세포 내에 존재하는 효소로, 이들 효소의 혈청 중 상승은 간 손상 평가 지표로 활용되고 있으며, 갑상선 기능저하증시에도 이들 효소의 혈청 내 상승이 관찰되고, PTU를 투여한 갑상선기능항진증 환자의 30%에서도 이들 효소의 증가가 인정된다^{26,40)}. 한편 일부 연구에서는 ALT 수치의 상승 없이 AST 수치의 증가만 인정되는 경우도 알려져 있고, 미세 구조상 간세포의 비대에 의한단위 면적당 간세포의 수적 감소가 인정된다²⁶⁾.

본 실험의 결과 간 중량의 감소와 함께 혈중 AST 함량의 증가 및 간세포의지방소적 침윤에 의한 비대에 따른 단위면적당 간세포의 수적 감소가 PTU 투여에 의해 유발되었으나, ALT 함량의증가는 인정되지 않았다. 한편 滋陰降火湯 투여군에서는 LT4 투여군과 유사하게, 이려한 PTU 투여에 의한 간 손상소견이 현저히 억제되어, 滋陰降火湯이갑상선기능저하증시 유발되는 간 손상을 억제하는 것으로 판단된다.

갑상선호르몬은 간에서의 지질 대사와 콜레스테롤 합성을 억제하여, 혈청 중 지질 함량에 변화를 유발한다⁴¹⁾. 갑상선기 능저하증에서 일반적으로 알려진 지질 단백질의 이상은 total cholesterol 및 LDL 함량의 증가로, 이들로 인해 혈관계의 합병증이 유발되는 것으로 알려져 있으며, LT₄의 투여에 의해 현저히 억제되는 것으로 알려져 있다⁴²⁾. 그러나 혈청 중 지질 변화는 갑상선호르몬의 상태에 따라 다양하게 변화되고, 특히 항산화 방어 인자의 변화와 직결되어 증감되는 것으로

알려져 있어, 갑상선기능저하증의 유발 정도, 시기 및 다른 합병증의 유무에 따라 매우 다양한 혈청 중 지질 함량의 변화가 유발된다²⁶⁾.

본 실험에서는 PTU 투여에 의해 의미 있는 혈청 중 total cholesterol 및 LDL 의 변화는 인정되지 않았으나, HDL의 증가와 triglyceride 감소는 유의성 있는 변화를 보였다. 이는 갑상선기능저하증에 있어 사람의 일반적인 지질 대사와는 반대의 결과로, 갑상선호르몬이 지질 대사에 있어 중 간에 차이를 보인다⁴¹⁾는 내용과 유사하다. 세 용량의 滋陰降火湯 투여군에서 PTU 대조군에 비해 혈청 중 HDL의 함량 감소와 triglyceride 함량의 증가가 인정된 점은 滋陰降火湯이 PTU로 유발된 지질 대사 장애를 갑상선호르몬의 함량 증가의 결과로 호전시킨 것으로 판단된다.

고환 역시 갑상선호르몬에 의해 영향을 받는 대표적인 장기로 알려져 있으며, 갑상선기능저하증시 고환 위축과 함께 남성 호르몬인 testosterone 및 DHT의 감소와 FSH의 함량 증가가 수반된다⁴³⁾. 또한 갑상선기능으로 인해 정자의 수, 형태및 활동성이 저하되는 것으로 보고되고 있다⁴⁴⁾. 정세관 상피는 정자발생 과정에따라 6단계로 구분하며, stage I∼Ⅱ 정세관에서는 성숙한 정자가 관내강내에존재하는 것으로 알려져 있다⁴⁴⁾.

본 실험에서도 이전의 연구들⁴³⁾과 유사하게, PTU 투여에 의해 고환, 부고환, 전립선의 절대 및 상대 중량 감소, testosterone과 DHT 함량 감소, FSH 함량의 증가의결과가 나타났다. 또한 고환 정세관의 위축 및 성숙 정자를 함유한 stage I∼Ⅱ정세관 비율의 감소, 부고환 위축과 정

자 감소증을 나타내는 부고환 도관의 수 적 증가, 전립선 도관의 위축이 조직병 리학적으로 인정되었다. 세 용량의 滋陰 降火湯 투여군에서는 PTU 대조군에 비 해 고환과 부고환, 전립선의 절대 및 상 대 중량의 증가가 투여 용량 의존적으로 이루어 졌으며, FSH의 유의성 있는 감 소와 testosterone 및 DHT 함량의 증가 가 인정되었다. 조직병리학적으로는 滋 陰降火湯 투여군에서 PTU 대조군에 비 해 고환 정세관 평균 직경 및 stage I~ Ⅱ 정세관 비율의 증가, 부고환 두부 평 균 직경의 증가 및 부고환 도관 비율의 감소, 전립선의 도관 상피의 평균 두께 증가 및 위축도관 비율의 감소 효과가 나타났다. 이는 PTU로 유발된 수컷 rat 의 성선기능 저하를 滋陰降火湯이 갑상 선기능을 개선함으로써 호전시키는 것으 로 판단된다.

하지만 LT₄ 투여군에서는 절대 고환 중량, 부고환과 전립선의 중량, testosterone의 함량, stage I~II 정세관 비율은 유의성 있는 변화가 없었으며, PTU 대조군에 비해 상대 고환 중량의 감소, FSH증가, 고환의 평균 정세관 직경의 감소, 부고환의 도관 비율의 증가, 전립선의도관 상피의 평균 두께 감소 및 위축 도관 비율의 증가가 유의성을 보였다.

산소라디칼은 SOD에 의해 억제되고 과산화수소는 CAT에 의해 무해한 물로 바뀌는데, SOD, CAT 등의 항산화 효소가 활성산소의 유리기를 제거함으로써 산화-항산화 균형을 유지하여 산화적 스트레스로부터 인체를 보호하고 있다⁴⁵⁾. 다불포화 지방산은 직·간접적으로 과산화과정을 통해 분해되어 결과적으로 MDA를 형성하는데, MDA는 지질과산화의 민

감한 지표로 이용되고 있다⁴⁵⁾.

갑상선기능저하증시에도 신체의 항산 화 방어 인자의 변화가 초래되는 것으로 알려져 있다. 일반적인 기초 대사량의 감소로 세포 호흡이 억제되어 지질 과산 화가 억제되고. SOD의 경미한 증가와 함께 CAT의 감소에 따른 H₂O₂의 조직내 축적 등이 유발되어 다양한 체내 손상이 유발되는 것으로 알려져 있다 $^{26)}$. 이중 간³⁹⁾과 고환⁴³⁾이 갑상선호르몬에 의해 영향을 받는 대표적인 장기로 알려져 있 으며, 갑상선기능저하증 소견이 항산화 제의 투여에 의해 현저히 감소되는 것으 로 알려져 있다²⁶⁾. 특히 고환의 산화적 stress가 현재 남성 불임의 중요한 인자 로 알려져 있으며, 갑상선의 상태에 의 해 정자의 수적 변화가 초래되는 것으로 알려져 있다⁴⁶⁾. 따라서 신체의 갑상선호 르몬 함량과 남성 불임은 특히 밀접한 관련이 있으며, 주로 고환 내 항산화 방 어 인자의 변화가 이에 관여하는 것으로 알려져 있다⁹²⁾. 이에 따라 강력한 항산 화 효과를 나타내는 천연물 유래의 갑상 선기능저하증 치료제의 개발이 주목 박 고 있는 실정이다⁴⁷⁾.

본 실험에서 간에서의 항산화 방어 인자는 PTU 투여에 의해 MDA의 경미한 감소와 함께 대표적인 내인성 항산화 효소인 SOD 활성의 증가, CAT 감소, H₂O₂의 증가가 나타나 이전의 연구들²⁶⁾과 일치하는 양상을 보였다. 그러나 滋陰降火湯 투여군은 LT₄ 투여군과 유사하게 경미한 SOD의 활성을 억제하였으며 CAT활성 증가에 의해 간 세포내 H₂O₂ 축적을 현저히 억제시키는 것으로 관찰되었다.

고환에서는 PTU 투여로 MDA의 유 의성 없는 감소를 보였고, H₂O₂의 유의 성 있는 증가, SOD, CAT의 유의성 있 는 감소가 나타나 간에서의 반응과 차이 가 났다. PTU 대조군에 비해 滋陰降火 湯 투여군의 SOD 및 CAT 활성의 증가, H₂O₂의 감소가 유의성 있게 투여 용량 의존적으로 나타났다. 간과 고환에서 SOD 가 다르게 반응하는 것은 간에 비해 고 환에서 PTU에 더욱 민감하게 항산화효 소가 억제되기 때문인 것으로 추측되며, 추가적인 연구가 필요하다고 본다. LT4 투여군에서는 H₂O₂의 함량의 증가와 함 께 SOD 활성이 유의성 있게 감소하였는 데, LT4 투여로 항산화 방어 인자의 악 화로 인한 성선 기능이 악화가 된 것으 로, Sahoo 등⁴⁸⁾의 보고와 유사하게 나타 났다. 간과 고환 모두에서 지질과산화의 민감한 지표인 MDA 함량은 유의한 변 화를 나타내지 않았는데, 이는 MDA 증 가가 되기 위해서는 좀 더 많은 시간과 장기간의 자극손상이 필요한 것으로 생 각된다. 결과적으로 滋陰降火湯은 간뿐 만 아니라 고환의 양호한 항산화 효과를 만들었으며 PTU 유발 갑상선기능저하 증시 초래되는 문제를 개선하여 생식기 장애를 억제하는 것으로 판단된다.

이상에서 滋陰降火湯의 경구투여는 PTU 유발 갑상선기능저하증시 초래되는 체중 의 감소, 갑상선 종대, 갑상선 및 성 호르 몬의 감소, 혈청 중 지질 함량의 변화 및 간과 생식기 손상을 투여 용량 의존적으로 억제하였고, 갑상선기능저하증시 초 래되는 항산화 방어 인자의 변화 역시 투여 용량 의존적으로 억제하였으므로, 갑 상선기능저하증 및 관련 간과 생식기 손 상에 매우 유효한 효과를 나타낼 것으로 기대된다. 향후 滋陰降火湯의 효능에 대한 임상연구를 병행하며 구성 개별 약재 의 효능 검색과 더불어 다양한 방면의 기전적인 연구를 더 수행해야 할 것으로 사료된다.

Ⅴ. 결 론

PTU로 유발된 rat의 갑상선기능저하 증에 미치는 영향을 평가하기 위하여 500, 250 및 125 mg/kg의 滋陰降火湯 투여 후 체중 및 장기의 중량, 혈중 호르몬의 함량, 혈청 성분의 함량, 항산화 방어인자, 조직병리학적인 변화를 LT₄ 투여군과 비교하여 살펴본 결과 다음과 같은 결론을 얻었다.

- 체중의 변화는 滋陰降火湯 투여군에서 PTU 대조군에 비해 PTU 투여기간 및 실험 전 기간 동안 체중 증가량이 유의하게 증가하였다.
- 2. 장기의 중량 변화는 滋陰降火湯 투여 군에서 PTU 대조군에 비해 절대 및 상대 갑상선 중량의 감소, 절대 및 상 대 간 중량의 증가가 각각 유의하게 나타났다. 절대 및 상대 고환 중량, 절 대 및 상대 부고환 중량, 절대 및 상대 전립선 중량은 투여 용량 의존적으로 각각 유의하게 증가하였다.
- 혈청 중 갑상선호르몬은 滋陰降火湯 투여군에서 PTU 대조군에 비해 투여 용량 의존적으로 T₃ 및 T₄ 함량의 증 가, TSH 함량의 감소가 각각 유의하 게 나타났다.
- 4. 혈청 중 성 호르몬은 滋陰降火湯 투여 군에서 PTU 대조군에 비해 testosterone 및 DHT 함량의 증가, FSH 함량 감소 가 각각 유의하게 나타났다.

- 5. 혈청 중 지질 함량은 滋陰降火湯 투여 군에서 PTU 대조군에 비해 HDL의 감소 및 triglyceride 함량의 증가가 각각 유의하게 나타났으며 total cholesterol 및 LDL 함량의 변화는 유의성이 인 정되지 않았다.
- 6. 혈청 중 AST 및 ALT 함량은 滋陰降 火湯 추출물 투여군에서 PTU 대조군 에 비해 AST 함량의 증가가 유의하 게 억제되었으며 ALT 함량의 변화는 유의성이 인정되지 않았다.
- 7. 항산화 방어 인자는 滋陰降火湯 추출 물 투여군에서 PTU 대조군에 비해 간 CAT 활성의 증가와 간 H₂O₂ 함량 및 SOD 활성의 감소가 각각 유의하 게 나타났다. 또한 투여 용량 의존적 으로 고환 SOD와 CAT 활성의 증가 와 고환 H₂O₂ 함량의 감소가 각각 유 의하게 나타났다.
- 8. 조직병리학적 변화는 滋陰降火湯 투여군에서 PTU 대조군에 비해 갑상선전체 두께의 감소와 평균 갑상선 여포 직경의 증가, 부고환 두부 평균 직경의 증가와 부고환 도관 비율의 감소가 각각 유의하게 나타났다. 또한투여 용량 의존적으로 단위 면적당간세포 수의 증가, 정세관 평균 직경증가 및 stage I~II 정세관 비율 증가, 전립선 도관 상피의 평균 두께 증가 및 위축 도관 비율의 감소가 각각유의하게 나타났다.

투	고	일	:	2014년	1월	21일
심	사	일	:	2014년	2월	4일
게재	확정	일	:	2014년	2월	10일

참고문헌

- 1. 조보연. 임상갑상선학. 제 3판. 서울: 고려의학. 2010:437-76.
- 2. 구병삼. 임상 부인과 내분비학. 서울: 고려의학. 2001:188.
- 3. Wiersinga WM. Thyroid hormone replacement therapy. Horm Res. 2001; 56:74-81.
- 4. 杜鎬京. 東醫腎系學. 서울:東洋醫學研究院. 1993:729, 867-74, 1042, 1059-65.
- 5. 최인구 등. 眞武湯이 白鼠의 甲狀腺機 能低下症에 미치는 영향. 대한한방내 과학회지. 2006;27(4):879-87.
- 6. 조충식, 김대복, 김철중. 當歸四逆湯이 백서의 갑상선기능저하증에 미치는 영 향. 大韓本草學會誌. 2007;22(1):95-102.
- 7. 김두희 등. 大營煎이 흰쥐의 갑상선기 능저하증에 미치는 영향. 大韓本草學 會誌. 2007:22(4):35-43.
- 홍민진 등. 淫羊藿이 실험적으로 유발된 감상선기능저하증 동물모델에 미치는 영향과 안정성. 대한약침학회지. 2011:14(4):13-22.
- 9. 이승진 등. 육종용이 PTU로 유발된 갑상선 기능저하증 동물모델에 미치는 영향. 동의생리병리학회지. 2011:25(6) :989-95.
- 10. 김승모 등. 시호가 PTU(6-n-propyl-2-thiouracil)로 유발된 Rat 갑상샘 기능저하증에 미치는 영향. 동의생리병리학회지. 2012;26(5):714-23.
- 11. 김용석, 강성길. 人蔘水鍼이 白鼠의 甲狀腺機能低下에 미치는 影響. 경 희의학. 1990;6(2):202-10.
- 12. 梁熙台. 鹿茸水鍼이 白鼠의 甲狀腺機

- 能低下에 미치는 影響. 針灸學會誌. 1992;9(1):215-27.
- 13. 龔延賢. 萬病回春. 서울:杏林書院. 1975 :204-5.
- 14. 蘭秀萍. 自擬滋陰降火湯治療更年期不 寐療效觀察. 山西職工醫學院學報. 2003: 13(3):25.
- 15. 김유경 등. 滋陰降火湯의 알레르기성 炎症反應抑制 效果. 대한한방내과학 회지. 2004:25(2):174-82.
- 16. 정홍매 등. 자음강화탕 투여 후 상열 감의 호전을 보인 타목시펜 복용 중 인 유방암 환자 1례. 대한한방내과학 회지. 2010:31(2):395-400.
- 17. Mogulkoç R, et al. Influence of hypovolemic and hypertonic treatments on plasma vasopressin levels and fluid balance in the propylthiouracil –induced hypothyroid rat. Neuro Endocrinol Lett. 1999:20:311-4.
- 18. O'Connor JC, Frame SR, Ladics GS. Evaluation of a 15-day screening assay using intact male rats for identifying steroid biosynthesis inhibitors and thyroid modulators. Toxicol Sci. 2002:69:79-91.
- 19. Kavutcu M, et al. Reduced enzymatic antioxidant defense mechanism in kidney tissues from gentamicin-treated guinea pigs: effects of vitamins E and C. Nephron. 1996:72:269-74.
- 20. Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ: Protein measurement with the Folin phenol reagent. J Biol Chem. 1951:193:265-75.
- 21. Jamall IS, Smith JC. Effects of cadmium on glutathione peroxidase, superoxidase

- dismutase and lipid peroxidation in the rat heart: a possible mechanism of cadmium cardiotoxicity. Toxicol Appl Pharmacol. 1985:80:33-42.
- 22. Pick E. Keisari Y. Superoxide anion and hydrogen peroxide production by chemically elicited peritoneal macrophages-induction by multiple nonphagocytic stimuli. Cell Immunol. 1981:59:301-18.
- Has UB. Methods of enzymatic analysis,
 New York: Academic Press Inc. 1974:673-86.
- 24. Nishikimi M, Rao NA, Yagi K. The occurrence of superoxide anion in the reaction of reduced PMS and molecular oxygen. Biochem Biophys Res Comm. 1972;46:849-54.
- 25. Kakkar P, Das B, Viswanathan PN. Modified spectrophotometric assay of SOD. Indian J Biochem Biophys. 1984;2:130-2.
- 26. Subudhi U, et al. Supplementation of curcumin and vitamin e enhances oxidative stress, but restores hepatic histoarchitecture in hypothyroid rats. Life Sci. 2009:84:372-9.
- 27. Gartner LP, Hiatt JL. Color textbook of histology. 3rd ed. Philadelphia: Saunders-Elsevier. 2007:489-510.
- 28. Devdhar M, Ousman YH, Burman KD. Hypothyroidism. Endocrinol Metab Clin North Am. 2007;36:595-615.
- 29. Surks MI, et al. Subclinical thyroid disease: scientific review and guidelines for diagnosis and management. JAMA. 2004:291:228-38.

- 30. Canaris GJ, Manowitz NR, Mayor G, Ridgway EC. The Colorado thyroid disease prevalence study. Arch Intern Med. 2000:160:526-34.
- 31. Guyton AC. Textbook of medical physiology. Philadelphia: WB Saunder's Company. 1986:906-8.
- 32. 박규열. 억간산이 PTU(6-n-propyl-2-thiouracil)로 유발된 Rat 갑상샘 기능저하증에 미치는 영향. 대구한의대학교 대학원 논문집. 2011.
- 33. 金容晟. 加減大補湯이 白鼠의 甲狀腺機能低下症에 미치는 影響. 大韓韓方内科學會誌. 1994:15(2):305-12.
- 34. 関庚勳. 八味地黃湯이 thiouracil로 誘發한 白鼠의 甲狀腺機能低下에 미치는 影響. 大田大韓醫學研究所 論文集. 1996; 5(1):233-50.
- 35. 임범수, 김철중. 右歸飮이 白鼠의 甲 狀腺機能低下症에 미치는 영향. 대한 한의학회지. 2000:21(4):26-36.
- 36. 이정원. 當歸四逆加吳茱萸生薑湯이 白 鼠의 갑상선기능저하증에 미치는 影 響. 大田大學校 韓醫學科 碩士學位論 文. 2001:1-35.
- 37. Yang Y, Gordon CJ. Regulated hypothermia in the hypothyroid rat induced by administration of propylthiouracil. Am J Physiol. 1997;272:R1390-5.
- 38. Oner J, et al. Effect of vitamin E on follicular cell proliferation and expression of apoptosis- associated factors in rats with 6-N-propyl-2-thiouracil-induced goitrogenesis. Folia Histochem Cytobiol. 2003;41:213-7.
- 39. Simon-Giavarotti KA, et al. Enhancement of lindane-induced liver oxidative stress

- and hepatotoxicity by thyroid hormone is reduced by gadolinium chloride. Free Radic Res. 2002:36:1033-9.
- 40. Chattopadhyay S, et al. Differential expression profiles of antioxidant enzymes and glutathione redox status in hyperthyroid rats: a temporal analysis. Comp Biochem Physiol C Toxicol Pharmacol. 2007;146:383-91.
- 41. Dory L, Roheim PS. Rat plasma lipoproteins and apolipoproteins in experimental hypothyroidism. J Lipid Res. 1981:22:287-96.
- 42. Teixeira PDF, et al. Lipid profile in different degrees of hypothyroidism and effects of levothyroxine replacement in mild thyroid failure. Transl Res. 2008:151:224-31.
- 43. Sahoo DK, et al. Hypothyroidism impairs antioxidant defence system and testicular physiology during development

- and maturation. Gen Comp Endocrinol. 2008:156:63-70.
- 44. Nikoobakht MR, et al. The role of hypothyroidism in male infertility and erectile dysfunction. Urology Journal. 2012:9(1):405-9.
- 45. 김영곤. 항산화제. 서울:여문각. 2004:154.
- Sanocka D, et al. Oxidative stress and male infertility. J Androl. 1996: 17:449-54.
- 47. Mutvei A, Nelson BD. The response of individual polypeptides of the mammalian respiratory chain to thyroid hormone. Arch Biochem Biophy. 1989: 268:215-20.
- 48. Sahoo DK, Roy A, Chainy GB. Protective effects of vitamin E and curcumin on L-thyroxine-induced rat testicular oxidative stress. Chem Biol Interact. 2008:176:121-8.