DOI QR코드

DOI QR Code

Study of surface modification and contact angle by electrospun PVdF-HFP membrane with DLC coating

DLC 코팅에 의한 PVdF-HFP 막의 표면변화 및 접촉각 연구

  • Lee, Tae Dong (Department of Nano Fusion Technology, Pusan National University) ;
  • Cho, Hyun (Department of Nanomechatronics Engineering, Pusan National University) ;
  • Yoon, Su Jong (Department of Nanomaterials Engineering, Pusan National University) ;
  • Kim, Tae Gyu (Department of Nanomechatronics Engineering, Pusan National University)
  • 이태동 (부산대학교 나노융합기술학과) ;
  • 조현 (부산대학교 나노메카트로닉스공학과) ;
  • 윤수종 (부산대학교 나노소재공학과) ;
  • 김태규 (부산대학교 나노메카트로닉스공학과)
  • Received : 2013.12.13
  • Accepted : 2014.02.11
  • Published : 2014.02.28

Abstract

Poly vinylidene fluoride-co-hexafluoropropylene (PVdF-HFP) membrane were prepared by the electrospinning technique. We had applied a DLC coating process and then the surface of the membrane and the contact angle change was investigated. Electrospun fibrous PVdF-HFP membrane surface became to wrinkled shape by Ar plasma treatment and treatment conditions. The wrinkled surface of PVdF-HFP membrane became super-hydrophilic. However, after DLC coating process, it became super-hydrophobic. The resulting surfaces were characterized by water contact angle measurement, X-ray photoelectron spectroscopy (XPS) and field emission scanning electron microscopy (FE-SEM). Resultantly it was recognized that the wettability characteristics of the membrane surfaces depended on the chemical composition and surface morphology.

전기방사법(Electrospinning technique)을 이용하여 PVdF-HFP(Poly vinylidene fluoride-co-hexafluoropropylene) 멤브레인을 제조하고, 그 멤브레인 표면위에 DLC(Diamond-like carbon) 코팅공정을 적용하여 멤브레인의 표면변화 및 접촉각 변화를 조사하였다. Ar 플라즈마 처리시간 및 처리조건에 따라 PVdF-HFP 멤브레인 파이버 표면이 주름(wrinkles)형태로 변화 하였다. 이러한 Ar 플라즈마 처리가 된 PVdF-HFP 멤브레인은 초친수성(super-hydrophilic) 특성으로 변했지만, 초친수성 PVdF-HFP 멤브레인에 DLC 코팅공정을 적용하면 반대로 초소수성(super-hydrophobic) 특성으로 변화되었다. 이러한 특성을 가진 표면을 접촉각 측정과 XPS, FE-SEM 측정으로 분석하였다. 따라서 화학적 조성과 표면 형상에 의해 접촉각 특성을 가지는 것으로 확인하였다.

Keywords

References

  1. C. Yao, X. Li, K.G. Neoh, Z. Shi and E.T. Kang, "Antibacterial activities of surface modified electrospun poly(vinylidenefluoride-co-hexafluoropropylene) (PVDFHFP) fibrous membranes", Appl. Surf. Sci. 255 (2009) 3854. https://doi.org/10.1016/j.apsusc.2008.10.063
  2. S.W. Choi, J.R. Kim, Y.R. Ahn, S.M. Jo and E.J. Cairns, "Characterization of electrospun PVdF fiberbased polymer electrolytes", Chem. Mater. 19 (2007) 104. https://doi.org/10.1021/cm060223+
  3. G.G. Kumar, K.S. Nahm and R.N. Elizabeth, "Electro chemical properties of porous PVdF-HFP membranes prepared with different nonsolvents", J. Membr. Sci. 325 (2008) 117. https://doi.org/10.1016/j.memsci.2008.07.015
  4. M. Stolarska, L. Niedzicki, R. Borkowska, A. Zalewska and W. Wieczorek, "Structure, transport properties and interfacial stability of PVdF/HFP electrolytes containing modified inorganic filler", Electrochim. Acta 53 (2007) 1512. https://doi.org/10.1016/j.electacta.2007.05.079
  5. D.W. Han, Y.H. Kim, D.J. Choi and H.K. Baik, "Hydrogen ion effect on the formation if DLC thin film by negative carbon ion beam", J. Korean Cryst. Growth Cryst. Technol. 10 (2000) 324.
  6. J.C. Park, O.G. Jeong, S.Y. Kim, S.J. Park, Y.H. Yun and H. Cho, "Silicon surface texturing for enhanced nanocrystalline diamond seeding efficiency", J. Korean Cryst. Growth Cryst. Technol. 23 (2013) 86. https://doi.org/10.6111/JKCGCT.2013.23.2.86
  7. B.G. Choi, J.H. Shin, C.I. Ahn and K.B. Shim, "Bonding structure of the DLC films deposited by RFPECVD", J. Korean Cryst. Growth Cryst. Technol. 14 (2004) 27.
  8. Y. Rahmawan, M.W. Moon, K.S. Kim, K.R. Lee and K.Y. Suh, "Wrinkled, dual-scale structures of diamondlike carbon (DLC) for superhydrophobicity", Langmuir 26(1) (2010) 484. https://doi.org/10.1021/la902129k
  9. J. Robertson, "Diamond-like amorphous carbon", Mater. Sci. Eng. R 37 (2002) 129. https://doi.org/10.1016/S0927-796X(02)00005-0
  10. R.N. Wenzel, "Resistance of solid surfaces to wetting by water", Ind. Eng. Chem. Res. 28 (1936) 988. https://doi.org/10.1021/ie50320a024
  11. P. Roach, N.J. Shirtcliffe and M.I. Newton, "Progess in superhydrophobic surface development", Soft Matter 4 (2008) 224. https://doi.org/10.1039/b712575p
  12. K.L. Johnson, K. Kendall and A.D. Roberts, "Surface energy and the contact of elastic solids", Proc. R. Soc. A. 324 (1971) 301. https://doi.org/10.1098/rspa.1971.0141
  13. D.K. Owens and R.C. Wendt, "Estimation of the surface free energy of polymers", J. Appl. Polym. Sci. 13 (1969) 1741. https://doi.org/10.1002/app.1969.070130815
  14. Y. Miyauchi, B. Ding and S. Shiratori, "Fabrication of a silver-ragwort-leaf-like super-hydrophobic micro/nanoporous fibrous mat surface by electrospinning", Nanotechnology 17 (2006) 5151. https://doi.org/10.1088/0957-4484/17/20/019
  15. J.P. Youngblood and T.J. McCarthy, "Ultrahydrophobic polymer surfaces prepared by simultaneous ablation of polypropylene and sputtering of poly(tetrafluoroethylene) using radio frequency plasma", Macromolecules 32 (1999) 6800. https://doi.org/10.1021/ma9903456
  16. B.G. Choi, S.Y. Kim, C.W. Park, J.H. Park, Y.P. Hong and K.B. Shim, "Effect of deposition pressure on the morphology of $TiO_2$ nanoparticles deposited on $Al_2O_3$ powders by pulsed laser deposition", J. Korean Cryst. Growth Cryst. Technol. 23 (2013) 167. https://doi.org/10.6111/JKCGCT.2013.23.4.167
  17. M.J. Jung, J.W. Lim, I.J. Park and Y.S. Lee, "Fluorination of polymethylmethacrylate (PMMA) film and its surface characterization", Appl. Chem. Eng. 21 (2010) 317.
  18. M.D. Duca, C.L. Plosceanu and T. Pop, "Surface modifications of polyvinylidene fluoride (PVDF) under rf Ar plasma", Polym. Degrad. Stab. 61 (1998) 65. https://doi.org/10.1016/S0141-3910(97)00130-4
  19. T.G. Kim, J.K. Kim, H. Cho, S.J. Yoon and H.S. Kim, "Electrical, transparence and wetting properities of diamond like carbon films", Int. J. Mod. Phys. B 25 (2011) 4180. https://doi.org/10.1142/S0217979211066532