DOI QR코드

DOI QR Code

Passivation properties of SiNx and SiO2 thin films for the application of crystalline Si solar cells

결정질 실리콘 태양전지 응용을 위한 SiNx 및 SiO2 박막의 패시베이션 특성 연구

  • Jeong, Myung-Il (School of Semiconductor and Chemical Engineering, Semiconductor Physics Research Center (SPRC), Chonbuk National University) ;
  • Choi, Chel-Jong (School of Semiconductor and Chemical Engineering, Semiconductor Physics Research Center (SPRC), Chonbuk National University)
  • 정명일 (전북대학교 반도체화학공학부) ;
  • 최철종 (전북대학교 반도체화학공학부)
  • Received : 2014.01.06
  • Accepted : 2014.02.07
  • Published : 2014.02.28

Abstract

We have investigated the passivation property of $SiN_x$ and $SiO_2$ thin films formed using various process conditions for the application of crystalline Si solar cells. An increase in the thickness of $SiN_x$ deposited using plasma enhanced chemical vapor deposition (PECVD) led to the improvement of passivation quality. This could be associated with the passivation of Si dangling bonds by hydrogen atoms which were supplied during PECVD deposition. The $SiO_2$ thin films grown using dry oxidation process exhibited better passivation behavior than those using wet oxidation process, implying the dry oxidation process was more effective in the formation of high quality $SiO_2$ thin films. The relative effective life time gradually decreased with increasing dry oxidation temperature. Such a degradation of passivation behavior could be attributed to the increase in interface trap density caused by thermal damages.

다양한 공정 조건으로 $SiN_x$$SiO_2$ 박막을 형성하고 이에 대한 패시베이션 특성에 대한 연구를 수행하였다. Plasma enhanced chemical vapor deposition(PECVD)을 이용하여 증착된 $SiN_x$ 박막의 경우, 증착 두께가 증가함에 따라 페시베이션 특성이 향상되는 것을 관찰하였다. 이는 PECVD 증착 공정 중 유입되는 수소 원자들이 실리콘 표면에 존재하는 Dangling bond와 결합하여 소수 캐리어의 재결합 현상을 효과적으로 감소시켰기 때문이다. 건식 산화법으로 형성된 $SiO_2$ 박막은 습식 산화법으로 형성된 것 보다 치밀한 계면 구조를 가짐으로 인하여 약 20배 이상 우수한 패시베이션 특성을 나타내었다. 건식 산화 공정 온도가 증가함에 따라 패시베이션 특성이 열화되는 현상이 발생하였고, Capacitance-voltage(C-V) 및 Conductance-voltage(G-V) 분석을 통하여 $SiO_2$/실리콘 계면에 존재하는 계면 결함 밀도 증가에 의해 나타나는 현상임을 알 수 있었다.

Keywords

References

  1. A.W. Blakers and M.A. Green, "20 % efficiency silicon solar cells", Appl. Phys. Lett. 48 (1986) 215. https://doi.org/10.1063/1.96799
  2. H.C. Jung, Y.K. Paek, H.H. Kim, J.H. Eum, K. Choi, H.-T. Kim and H.S. Chang, "Formation of lotus surface structure for high efficiency silicon solar cell", J. Korean Cryst. Growth Cryst. Technol. 20 (2010) 7. https://doi.org/10.6111/JKCGCT.2010.20.1.007
  3. K.-H. Lee, "A study on the surface characteristics of diamond wire-sawn silicon wafer for photovoltaic application", J. Korean Cryst. Growth Cryst. Technol. 21 (2011) 225. https://doi.org/10.6111/JKCGCT.2011.21.6.225
  4. M.A Green, J. Zhao, A. Wang and S.R. Wenham, "Progress and outlook for high-efficiency crystalline silicon solar cells", Sol. Energy Mater. Sol. Cells 65 (2001) 9. https://doi.org/10.1016/S0927-0248(00)00072-6
  5. P.A. Basore, "Numerical modeling of textured silicon solar cells using PC-1D", IEEE Trans. Electron Devices 37[2] (1990) 337. https://doi.org/10.1109/16.46362
  6. R. Hezel and R. Scho Krner, "Plasma Si nitride-A promising dielectric to achieve high-quality silicon", J. Appl. Phys. 52 (1981) 3076. https://doi.org/10.1063/1.329058
  7. Fred W. Sexton, "Plasma nitride AR coatings for silicon solar cells", Solar Energy Mater. 7 (1982) 1. https://doi.org/10.1016/0165-1633(82)90091-0
  8. R. Hezel and K. Jaeger, "Low-temperature surface passivation of silicon for solar cells", J. Electrochem. Soc. 136 (1989) 518. https://doi.org/10.1149/1.2096673
  9. Armin G. Aberle and Rudolf Hezel, "Progress in lowtemperature surface passivation of silicon solar cells using remote-plasma silicon nitride", Prog. Photovoltaics 5 (1997) 29. https://doi.org/10.1002/(SICI)1099-159X(199701/02)5:1<29::AID-PIP149>3.0.CO;2-M
  10. P. Saint-Cast, J. Benick, D. Kania, L. Weiss, M. Hofmann, J. Rentsch, R. Preu and S.W. Glunz, "High-efficiency c-Si solar cells passivated with ALD and PECVD aluminum oxide", IEEE Electron Device Lett. 31 (2010) 695. https://doi.org/10.1109/LED.2010.2049190
  11. J. Zhao, A. Wang and M. A. Green, "24.5 % efficiency silicon PERT cells on MCZ substrates and 24.7 % efficiency PERL cells on FZ substrates", Prog. Photovoltatics 7 (1999) 471. https://doi.org/10.1002/(SICI)1099-159X(199911/12)7:6<471::AID-PIP298>3.0.CO;2-7
  12. I. Martin, M. Vetter, A. Orpella, J. Puigdollers, A. Cuevas and R. Alcubilla, "Surface passivation of p-type crystalline Si by plasma enhanced chemical vapor deposited amorphous SiCx : H films", Appl. Phys. Lett. 79 (2001) 2199. https://doi.org/10.1063/1.1404406
  13. Armin G. Aberle, "Surface passivation of crystalline silicon solar cells: a review", Prog. Photovoltatics 8 (2000) 473. https://doi.org/10.1002/1099-159X(200009/10)8:5<473::AID-PIP337>3.0.CO;2-D
  14. Armin G. Aberle, "Overview on SiN surface passivation of crystalline silicon solar cells", Sol. Energy Mater. Sol. Cells 65 (2001) 239. https://doi.org/10.1016/S0927-0248(00)00099-4
  15. Sara Olibet, Evelyne Vallat-Sauvain and Christophe Ballif, "Model for a-Si:H/c-Si interface recombination based on the amphoteric nature of silicon dangling bonds", Phys. Rev. B 76 (2007) 035326. https://doi.org/10.1103/PhysRevB.76.035326
  16. C.-J. Choi, M.-G. Jang, Y.-Y. Kim, M.-S. Jeon, B.-C. Park, S.-J. Lee, R.-J. Jung, H.-d. Yang, M. Chang and H.-s. Hwang, "Effects of high-pressure hydrogen postannealing on the electrical and structural properties of the Pt-Er alloy metal gate on $HfO_2$ film", Electrochem. Solid State Lett. 9 (2006) G228. https://doi.org/10.1149/1.2197968
  17. H. Yang, Y. Son, S. Choi and H. Hwang, "Improved conductance method for determining interface trap density of metal-oxide-semiconductor device with high series resistance", Jpn. J. Appl. Phys. 44 (2005) L1460. https://doi.org/10.1143/JJAP.44.L1460
  18. Dieter K. Schroder and Jeff A. Babcock, "Negative bias temperature instability: Road to cross in deep submicron silicon semiconductor manufacturing", J. Appl. Phys. 94 (2003) 1. https://doi.org/10.1063/1.1567461
  19. J.F. Zhang, C. Z. Zhao, G. Groeseneken, R. Degreave, J.N. Ellis and C.D. Beech, "Hydrogen induced positive charge generation in gate oxides", J. Appl. Phys. 90 (2001) 1911. https://doi.org/10.1063/1.1384860

Cited by

  1. thin film for the application of n-type crystalline Si solar cells vol.24, pp.3, 2014, https://doi.org/10.6111/JKCGCT.2014.24.3.106
  2. Changes of discharge voltage of plate-type sodium sulfur batteries in the early charge/discharge cycles vol.24, pp.4, 2014, https://doi.org/10.6111/JKCGCT.2014.24.4.164