DOI QR코드

DOI QR Code

긴급시공이 가능한 FRP 복합재료 보강재로 보강된 기둥의 내진성능평가

An Performance Evaluation of Seismic Retrofitted Column Using FRP Composite Reinforcement for Rapid Retrofitting

  • 김진섭 (경상대학교 토목공학과 공학연구원) ;
  • 서현수 (경상대학교 토목공학과 공학연구원) ;
  • 임정희 (경상대학교 토목공학과 공학연구원) ;
  • 권민호 (경상대학교 토목공학과 공학연구원)
  • Kim, Jin-Sup (Dept. of Civil Engineering, ERI, Gyeongsang National University) ;
  • Seo, Hyun-Su (Dept. of Civil Engineering, ERI, Gyeongsang National University) ;
  • Lim, Jeong-Hee (Dept. of Civil Engineering, ERI, Gyeongsang National University) ;
  • Kwon, Min-Ho (Dept. of Civil Engineering, ERI, Gyeongsang National University)
  • 투고 : 2013.07.17
  • 심사 : 2013.12.20
  • 발행 : 2014.02.28

초록

최근 빈번하게 발생하는 대규모의 지진으로 구조물의 내진보강에 관심이 높아지고 있다. 내진설계가 반영되지 않은 기둥의 취성파괴는 구조물 전체 붕괴를 유발하기 때문에 내진보강이 필수적이다. 기존에는 단면증설법, 강판보강법, 섬유보강법이 내진보강법으로 주로 이용되었다. 하지만 이 보강법들은 구조물의 물리적 손상과 넓은 작업공간, 오랜 시간이 소요되는 단점이 있다. 이에 이 연구에서는 기존에 개발된 FRP 보강재의 보강 성능을 평가하였다. 대상 시험체는 학교건물을 실험실 여건에 맞춰 80% 축소하여 제작하였다. 보강재의 재료를 유리섬유와 알루미늄 다공판을 사용하여 보강재를 제작하였다. 평가 결과 두 종류의 보강재를 사용한 모두에서 시험체의 내진성능이 증가하였다.

As increasing number of large-size earthquake around Korean peninsula, many interests have been focused to the earthquake strengthening of existing structures. The brittle fracture of Non-seismic designed columns lead to full collapse of the building. In the past, cross-sectional extension method, a steel plate reinforcing method and fiver-reinforced method are applied to Seismic Rehabilitation Technique mainly. However, the reinforcement methods have drawbacks that induce physical damage to structures, large space, long duration time. So, in this study, performance evaluation of previously developed FRP seismic reinforcement which do not induce physical damage and short duration time was enforced. The specimens were constructed with 80% downscale. FRP seismic reinforcement are manufactured of glass fiber or aluminum plate with holes and glass fiber. From the experiment results, seismic performance of specimens which reinforced with FRP seismic reinforcement were increased.

키워드

참고문헌

  1. Kim, K. D., Sim, J. I., Yang, K. H., and Chung, H. S., "Flexural Behavior of Reinforced Concrete Columns with Wire Ropes as Lateral Spiral Reinforcement," Journal of the Architectural Institute of Korea, Vol. 24, No. 12, 2008, pp. 83-90.
  2. Sim J. S. and Kim G. S., "Application of FRP in Construction," Magazine of the Korea Concrete Institute, Vol. 12, No. 6, 2000, pp. 37-43.
  3. Chang, C. H., Kwon, M. H., Kim, J. S. and Joo, C. H. "Numerical Study for Seismic Strengthening of RC columns Using Fiber Reinforced Plastic Composite," Journal of the Korea Institute for Structural Maintenance Inspection, Vol.16, No.3, 2012, pp.117-127. (doi:http:// dx.doi.org/10.11112/jksmi.2012.16.3.117)
  4. Mander, J., Priestley, M. and Park, R., "Theoretical Stress Strain Model for Confined Concrete," Journal of the Structural Division, ASCE, Vol. 114, No. 8, 1988, pp. 1804-1826. (doi: http://dx.doi.org/10.1061/(ASCE)0733-9445(1988) 114:(1804))
  5. Katsumata, H., Kobatake, Y., and Takeda, T., "A Study on Strengthening with Carbon Fiber for Earthquake-Resistant Capacity of existing Reinforced Concrete Columns," NWCEE, Vol. 7, 1988, pp. 517-522.
  6. Priestley, M., Verma, R., and Xiao, Y., "Seismic Shear Strength of Reinforced Concrete Columns," Journal of Structural Engineering, ASCE, Vol. 120, No. 8, 1994a, pp. 2310-2329. (doi: http://dx.doi.org/10.1061/(ASCE)0733-9445(1994)120:8(2310))
  7. Frangou, M., Pilakoutas, K., and Dritsos, S., "Structural Repair/Strengthening of RC Columns," Construction and Building Materials, Vol. 9, No. 5, 1995, pp. 259-266. (doi: http://dx.doi.org/10.1016/0950-0618(95)00013-6)
  8. Ye, L. P., Zhang, K., Zhao, S. H., and Feng, P., "Experimental Study on Seismic Strengthening of RC Columns with Wrapped CFRP Sheets," Construction and Building Materials, Vol. 17, No. 6/7, 2003, pp. 499-506. (doi: http://dx.doi.org/10.1016/S0950-0618(03)00047-3)
  9. Dhakal, R. P. and Meakawa, K., "Reinforcement Stability and Fracture of Cover Concrete in Reinforced Concrete Members," Journal of Structure Engineering, ASCE, Vol. 128, No. 10, 2002, pp. 1253-1262. (doi: http://dx.doi.org/10.1061/(ASCE)0733-9445(2002)128:10(1253))
  10. ACI Committee 437, Load Tests of Concrete Structures: Methods, Magnitude, Protocols, and Acceptance Criteria (ACI 437.1R-07), American Concrete Institute, USA, 2012.
  11. ABAQUS, Dassault Systems Simulia Corp., Abaqus Analysis User's Manual. Version 6.10, 2011.
  12. Kwon, M. H., Shing. P. B., Mallare. C., and Restrepo, J., "Seismic Resistance of RC Bent Caps in Elevated Mass Transit Structures," Earthquake Spectra, Vol. 27, No.1, 2011, pp.67-88. (doi: http://dx.doi.org/10.1193/1.3533471)
  13. Kim, J. S., Kwon, M. H., Jung, W. Y., and Kim, K. H., "The Analytical Study on Seismic Performance Evaluation for Reinforcd Columns of Underground Tunnel," Journal of the Korean Society of Hazard Mitigation, Vol. 12, No. 4, 2012, pp. 9-15. (doi: http://dx.doi.org/10.9798/KOSHAM. 2012.12.4.009)
  14. Lubliner, J., Oliver, J., Oller, S., and Onate, E., "A Plastic-Damage Model for Concrete," International Journal of Solid and Structures, Vol. 25, No. 3, 1989, pp. 299-326. (doi: http://dx.doi.org/ 10.1016/0020-7683(89)90050-4)
  15. Lee, J. and Fenvas, G. L., "Plastic-Damage Model For Cyclic Loading of Concrete Structure," Journal of Engineering Mechanics, ASCE, Vol. 124, No. 8, 1998, pp. 892-900. (doi: http://dx.doi.org/10.1061/(ASCE)0733-9399(1998) 124:8(892))