DOI QR코드

DOI QR Code

다중 자료 변환을 이용한 구성 자료의 지구통계학적 시뮬레이션

Geostatistical Simulation of Compositional Data Using Multiple Data Transformations

  • 박노욱 (인하대학교 지리정보공학과)
  • Park, No-Wook (Department of Geoinformatic Engineering, Inha University)
  • 투고 : 2014.01.29
  • 심사 : 2014.02.12
  • 발행 : 2014.02.28

초록

이 논문에서는 구성 자료의 지구통계학적 시뮬레이션을 위해 다중 자료 변환 기반 조건부 시뮬레이션 틀을 제안하였다. 우선 일반적인 통계 기법의 적용이 가능하도록 구성 자료에 로그비 변환을 적용하였다. 다음 변환들로는 최소/최대 자기상관 인자 변환과 지시자 변환을 순차적으로 적용하였다. 독립적인 새로운 변수의 생성을 위해 최소/최대 자기상관 인자 변환을 적용하였으며, 적용 결과 개별 변수들의 독립적인 시뮬레이션이 가능해진다. 그리고 다중 가우시안 확률 모델을 따르지 않는 변수들의 비모수적 조건부 누적 확률 분포 모델링을 위해 지시자 변환을 적용하였다. 최종적으로는 적용한 변환 방법들의 역순으로 역 변환을 적용하였다. 간석지 표층 퇴적물 성분 자료를 대상으로 제안 시뮬레이션 기법의 적용 가능성을 예시하였다. 모든 시뮬레이션 결과들은 구성 자료의 제한 조건을 만족하면서 샘플 자료의 통계 특성을 잘 반영하였다. 구성 자료의 다수의 시뮬레이션 결과들을 이용한 표층 퇴적물 분류를 통해 기존 크리깅에서는 얻을 수 없는 분류 결과의 확률론적 평가가 가능하였다. 따라서 제안 시뮬레이션 틀은 다양한 구성 자료의 지구통계학적 시뮬레이션에 효과적으로 이용될 수 있을 것으로 기대된다.

This paper suggests a conditional simulation framework based on multiple data transformations for geostatistical simulation of compositional data. First, log-ratio transformation is applied to original compositional data in order to apply conventional statistical methodologies. As for the next transformations that follow, minimum/maximum autocorrelation factors (MAF) and indicator transformations are sequentially applied. MAF transformation is applied to generate independent new variables and as a result, an independent simulation of individual variables can be applied. Indicator transformation is also applied to non-parametric conditional cumulative distribution function modeling of variables that do not follow multi-Gaussian random function models. Finally, inverse transformations are applied in the reverse order of those transformations that are applied. A case study with surface sediment compositions in tidal flats is carried out to illustrate the applicability of the presented simulation framework. All simulation results satisfied the constraints of compositional data and reproduced well the statistical characteristics of the sample data. Through surface sediment classification based on multiple simulation results of compositions, the probabilistic evaluation of classification results was possible, an evaluation unavailable in a conventional kriging approach. Therefore, it is expected that the presented simulation framework can be effectively applied to geostatistical simulation of various compositional data.

키워드

참고문헌

  1. Aitchison, J., 1986, The statistical analysis of compositional data. Chapman and Hall, London, UK, 416 p.
  2. Boucher, A. and Dimitrakopoulos, R., 2009, Block-support simulation of multiple correlated variables. Mathematical Geosciences, 41, 215-237. https://doi.org/10.1007/s11004-008-9178-0
  3. Buttafuoco, G., Conforti, M., Aucelli, P.P.C., Robustelli, G., and Scarciglia, F., 2012, Assessing spatial uncertainty in mapping soil erodibility factor using geostatistical stochastic simulation. Environmental Earth Sciences, 66, 1111-1125. https://doi.org/10.1007/s12665-011-1317-0
  4. Chiles, J.-P. and Delfiner, P., 2012, Geostatistics: Modeling spatial uncertainty. Wiley, New York, USA, 734 p.
  5. Davis, J.C., 2002, Statistics and data analysis in geology. Wiley, New York, USA, 656 p.
  6. Desbarats, A.J. and Dimitrakopoulos, R., 2000, Geostatistical simulation of regionalized pore-size distributions using min/max autocorrelation factors. Mathematical Geology, 32, 919-942. https://doi.org/10.1023/A:1007570402430
  7. Deutsch, C.V. and Journel, A.G., 1998, GSLIB: Geostatistical Software Library and User's Guide. Oxford University Press, New York, USA, 369 p.
  8. Egozcue, J.J., Pawlowsky-Glahn, V., Mateu-Figueras, G., and Barcelo-Vidal, C., 2003, Isometric logratio transformations for compositional data analysis. Mathematical Geology, 35, 279-300. https://doi.org/10.1023/A:1023818214614
  9. Emery, X. and Galvez, I., 2012, A plurigaussian model for simulating regionalized compositions. In Abrahamsen, P., Hauge, R., and Kolbjornsen, O. (eds.), Geostatistics Oslo 2012. Springer, New York, USA, 39-50.
  10. Goovaerts, P., 1993, Spatial orthogonality of the principal components computed from coregionalized variables. Mathematical Geology, 25, 281-302. https://doi.org/10.1007/BF00901420
  11. Goovaerts, P., 1997, Geostatistics for natural resources evaluation. Oxford University Press, New York, USA, 483 p.
  12. Goovaerts, P., 2009, AUTO-IK: A 2D indicator kriging program for the automated non-parametric modeling of local uncertainty in earth sciences. Computers & Geosciences, 35, 1255-1270. https://doi.org/10.1016/j.cageo.2008.08.014
  13. Goovaerts, P., 2010, Combining areal and point data in geostatistical interpolation: applications to soil science and medical geography. Mathematical Geosciences, 42, 535-554. https://doi.org/10.1007/s11004-010-9286-5
  14. Goovaerts, P., Trinh, H.T., Demond, A., Franzblau, A., Garabrant, D., Gillespie, B., Epkowski, J., and Adriaens, P., 2008, Geostatistical modeling of the spatial distribution of soil dioxins in the vicinity of an incinerator. 1. theory and application to Midland, Michigan. Environmental Science & Technology, 42, 3648-3654. https://doi.org/10.1021/es702494z
  15. Jang, D.-H., Kim, J.-S., and Park, N.-W., 2010, Characteristics variation of the sedimentary environment in winter season around the Baramarae beach of Anmyondo using surface sediment analysis. Journal of the Korean Geomorphological Association, 17, 15-27. (in Korean)
  16. Kyriakidis, P.C. and Dungan, J.L., 2001, A geostatistical approach for mapping thematic classification accuracy and evaluating the impact of inaccurate spatial data on ecological model predictions. Environmental and Ecological Statistics, 8, 311-330. https://doi.org/10.1023/A:1012778302005
  17. Kyriakidis, P.C., Miller, N.L., and Kim, J., 2004, A spatial time series framework for simulating daily precipitation at regional scales. Journal of Hydrology, 297, 236-255. https://doi.org/10.1016/j.jhydrol.2004.04.022
  18. Lark, R.M. and Bishop, T.F.A., 2007, Cokriging particle size fractions of the soil. European Journal of Soil Science, 58, 763-774. https://doi.org/10.1111/j.1365-2389.2006.00866.x
  19. Lark, R.M., Dove, D., Green, S.L., Richardson, A.E., Stewart, H., and Stevenson, A., 2012, Spatial prediction of seabed sediment texture classes by cokriging from a legacy database of point observations. Sedimentary Geology, 281, 35-49. https://doi.org/10.1016/j.sedgeo.2012.07.009
  20. Lee, S.-W., Park, N.-W., Jang, D.-H., Yoo, H.Y., and Lim, H., 2012, Surface sediments classification in tidal flats using multivariate kriging and KOMPSAT-2 imagery. Journal of the Korean Geomorphological Association, 19, 37-49.
  21. Martin-Fernandez, J.A. and Thio-Henestrosa, S., 2006, Rounded zeros: Some practical aspects for compositional data. In Buccianti, A., Mateu-Figueras, G., and Pawlowsky-Glahn, V. (eds.), Compositional data analysis in the geosciences: From theory to practice. Geological Society of London, UK, 191-201.
  22. Odeh, I.O.A., Todd, A.J., and Triantafilis, J., 2003, Spatial prediction of soil particle-size fractions as compositional data. Soil Science, 168, 501-515.
  23. Oh, J.-K. and Kum, B.-C., 2001, Depositional environments and characteristics of surface sediments in the nearshore and offshore the mid-western coast of the Korean peninsula. Journal of the Korean Earth Science Society, 22, 377-387. (in Korean)
  24. Oh, S., 2005, RMR evaluation by integration of geophysical and borehole data using non-linear indicator transform and 3D kriging. Journal of the Korean Earth Science Society, 26, 429-435. (in Korean)
  25. Oh, S. and Han, S.-M., 2010, Downscaling of geophysical data for enhanced resolution by geostatistical approach. Journal of the Korean Earth Science Society, 31, 681- 690. (in Korean) https://doi.org/10.5467/JKESS.2010.31.7.681
  26. Oz, B., Deutsch, C.V., Tran, T.T., and Xie, Y., 2003, DSSIM-HR: A FORTRAN 90 program for direct sequential simulation with histogram reproduction. Computers & Geosciences, 29, 39-51. https://doi.org/10.1016/S0098-3004(02)00071-7
  27. Park, N.-W., 2010, Exemplifying the potential of indicator geostatistics for probabilistic uncertainty and risk analyses of geochemical data. Journal of the Korean Earth Science Society, 31, 301-312. (in Korean) https://doi.org/10.5467/JKESS.2010.31.4.301
  28. Park, N.-W., 2011, Time-series mapping and uncertainty modeling of environmental variables: A case study of PM10 concentration mapping. Journal of the Korean Earth Science Society, 32, 249-264. (in Korean) https://doi.org/10.5467/JKESS.2011.32.3.249
  29. Park, N.-W. and Jang, D.-H., 2014, Comparison of geostatistical kriging algorithms for intertidal surface sediment facies mapping with grain size data. The Scientific World Journal, (in press).
  30. Park, N.-W. and Oh, S., 2006. Application of geostatistical simulation to assessment of the effects of uncertainty of spatial data in mineral potential prediction. Journal of the Korean Society of Mineral and Energy Resources Engineers, 43, 213-223. (in Korean)
  31. Pawlowsky-Glahn, V. and Buccianti, A., 2011, Compositional data analysis: Theory and applications. Wiley, Chichester, UK, 400 p.
  32. Pawlowsky-Glahn, V. and Olea, A., 2004, Geostatistical analysis of compositional data. Oxford University Press, New York, USA, 304 p.
  33. Poppe, L.J., Eliason, A.H., and Hastings, M.E., 2003, A visual basic program to classify sediments based on gravel-sand-silt-clay ratios. Computers & Geosciences, 29, 805-809. https://doi.org/10.1016/S0098-3004(03)00048-7
  34. Rondon, O., 2012, Teaching aid: Minimum/maximum autocorrelation factors for joint simulation of attributes. Mathematical Geosciences, 44, 469-504. https://doi.org/10.1007/s11004-011-9329-6
  35. Saito, H. and Goovaerts, P., 2003, Selective remediation of contaminated sites using a two-level multiphase strategy and geostatistics. Environmental Science & Technology, 37, 1912-1918. https://doi.org/10.1021/es020737j
  36. Shepard, F.P., 1954, Nomenclature based on sand-silt-clay ratios. Journal of Sedimentary Petrology, 24, 151-158.
  37. Shin, D.-H., Kum, B.-C., Park, E.Y., Lee, H.-I., and Oh, J.-K., 2004, Seasonal sedimentary characteristics and depositional environments after the construction of seawall on the Iwon macrotidal flat. Journal of the Korean Earth Science Society, 25, 615-628. (in Korean)
  38. Switzer, P. and Green, A.A., 1984, Min/Max autocorrelation factors for multivariate spatial imagery. Technical Report No. 6, Department of Statistics, Stanford University, Stanford, USA, 14 p.
  39. Vargas-Guzman, A. and Dimitrakopoulos, R., 2003, Computational properties of min/max autocorrelation factors. Computers & Geosciences, 29, 715-723. https://doi.org/10.1016/S0098-3004(03)00036-0
  40. Wang, G., Gernter, G.Z., Fang, S., and Anderson, A.B., 2003, Mapping multiple variables for predicting soil loss by joint sequential co-simulation with TM images and slope map. Photogrammetric Engineering & Remote Sensing, 69, 889-898. https://doi.org/10.14358/PERS.69.8.889