ISSN 1598-0170 (Print)
ISSN 2287-1136 (Online)
http://www.jksii.or kr

AR vlolellols2) thEAlse

Development of a Concurrency Control Technique for Multiple Inheritance
in Object-Oriented Databases

912 S Alo) 71 A

I 5 4 P
Woochun Jun Suk-Ki Hong
2 o
AFA ¢ dlojemo] g 2 Fofoll A= 71Ee] &7 HolE] By Rt} o Iy Rdd 7]5s Jo= sith Olﬂiﬂ ok
A AAA G ol o] A AAE Rof FUAE AFsty T Fes Atololl A AL g AE a9 SY2dA BEFe AS
TFZE A7) el o £ volH Byl F F 9}

2 =19 54 44 I%kﬂl ol IMM = 711’“% A A Ao IME NEEE Aotk B =EoA Algse
MilL(Multiple Inheritance Implicit Locking) 7182 7132] Implicit &7 (Locking) 7IHell 7S FA ok ML 712 712 2implicit 27 ol
Al B8 27S AAGA ““61 = i Al Al AFetE MIL 71l A €] Intention 27 71E9] Implicit 27 71 3} 543l
25 < 71E9] Implicit 27 7IMETH 27 WS E7F A& TR Edl 2 =RdAE
@ AsH bF As 5 74]%%%“&" OO TN 2P SWFES Fo]7] A% FUHAQ HEE FAR A weTh

e FAlol AAATE volgulol s, FA Ao, 27 ¥, Edx AT

ABSTRACT

Currently many non-fraditional application areas such as artificial infeligence and web databases require advanced modeling
power than the existing relational data model. In those application areas, object-oriented dafabase (OODB) is betfter data model since
an OODB can providemodeling power as grouping similar objects info class, and organizing all classes info a hierarchy where a
subclass inherits all definitions from its superclasses.

The purpose of this paper is to develop an OODB concurrency confrol scheme dealing with multiple inheritance. The proposed
scheme, called Multiple Inheritance Implicit Locking (MIIL), is based on so-called implicit locking. In the proposed scheme, we eliminate
redundant locks that are necessary in the existing implicit locking scheme. Intention locks are required as the existing implicit locking
scheme. In this paper, it is shown that MIL has less locking overhead than implicit locking does. We use only OODB inheritance
hierarchies, single inheritance and multiple inheritance so that no additional overnead is necessary for reducing locking overhead.

= Keywords: Object-oriented Database, Concurrency Control, Locking Model, Class Hierarchy

1. Introduction

Many new database applications such as computer-aided
design (CAD), computer-aided software engineering (CASE),

1 Dept. of Computer Education, Seoul National University of
Education, Seoul,137-742, Korea.
2 Dept. of Business Administration, Dankook University, Jukjeon,
Gyeonggido, 448-701, Korea
* Corresponding author (skhong017 @dankook.ac.kr)
[Received 22 October 2013, Reviewed 24 October 2013,
Accepted 2 December 2013]
v¢ A preliminary version of this paper appeared in APIC-IST
2013, Aug 12-14, Jeju Island, Korea. This version is
improved considerably from the previous version by including
new results and features.

and office information systems have emerged. These new
areas require advanced modeling capabilities to handle
complex data and complex relationships among data. In
those areas, complex modeling is impossible or very
difficult, if the existing relational data model is adopted. An
OODB s suitable for such applications, since it provides
modeling power as grouping similar objects into class, and
organizing all classes into a hierarchy where a subclass
inherits all definitions from its superclasses.

In [11], an OODB is defined as “a collection of objects
whose behavior and state, and the relationships are defined
in accordance with an object-oriented data model”. Also, an
object-oriented database system (OODBS) is defined as “a

Journal of Internet Computing and Services(JICS) 2014. Feb: 15(1): 63-71 63

http://dx.doi.org/10.7472/jksii.2014.15.1.63



AR HoIEHlo| 20| CISHISS flet SAIY HMof 718

database system which allows the definition and
manipulation of an OODB". The followings are basic
concepts in OODBs [11].

® Object: any real world entity can be an object. Also, each
object is associated with a unique identifier.

o Attribute: an object has one or more attributeswhose
values are also objects. The values of an attribute
represent the state of an object.

® Method: an object has one or more methods which
operates on the state of the object.

® Class: all objects sharing the same set of attributes and
methods can be grouped into a class.

An object belongs to only one class as an instance of the

class.

® Encapsulation: it is the process of packaging the data
elements and functionality together. That is, the state of
an object can be manipulated and read only by invoking
the object’s methods.

® Class hierarchy: the classes form a hierarchy which is
directed-acyclic graph) called a class hierarchy. 1t is
based on generalization and specialization concepts,
which will be discussed later.

One of the major properties of OODBs is inheritance.
That is, a subclass inherits the definitions defined on its
superclasses. Also, there is an is-a relationship between a
subclass and its superclasses. Thus, an instance of a subclass
is a specialization of its superclasses (and conversely, an
instance of a superclass is a generalization of its subclasses)
[45,11]. There are two types of inheritance: single
inheritance and multiple inheritance. In single inheritance, a
class can inherit the class definition from one superclass. On
the other hand, a class inherits the class definition from
more than one class in multiple inheritance.

In general, there are two types of access to an object:
instance access and class definition access [1]. Especially,
there are two types of access on a class hierarchy: class
definition write and IACH (Instance Access to Class
Hierarchy) [3,11]. IACH represents an instance access to all
or some instances of a given class and itssubclasses. A

query is an example of IACH where a query is defined as

instance reads to a given class and its subclasses [3]. Due to
the inheritance rules, while a class and its instances are
being accessed, the definitions of the class’ superclasses
should not be changed. Also, due to the is-a relationship
between classes, the search space for a query against a class,
says C, may include the instances of all classes on the class
hierarchy rooted at C as well as all instances of C. For
convenience, we call MCA (Multiple Class Access) for class
definition write and IACHs, and SCA (Single Class Access)
for other accesses such as class definition read and instance
access to a single class.

For class hierarchy, there are two locking-based
approaches: explicit locking [1,15] and implicit locking
[3,11,13,14]. These two approaches have different philosophies
dealing with a class hierarchy and will be discussed in
Section 2. In this paper, we present a locking-based
concurrency control scheme for OODBs that is based on
implicit locking but incurs less overhead.

Recently Web database systems have become popular for
many applications because of many advantages of the Web
technology. For example, the multiple-platform issue
becomes undisputable since web browsers are available on
almost all platforms [10]. Also, Web’s hypermedia-based
Given the
advantages of the Web technology, the big concern is about

model becomes familiar to most users.

the connectivity between a Web server and a database
server. That is, how cana Web browser be used to access
information stored and managed by commercial database
systems? The common solution is to use Common Gateway
Interface (CGI) programs. These programs become middle
layer applications between the Web server and the database
server. Also, the CGI becomes a standard for interfacing
external applications with Web servers [10].

For example, Figure 1 shows the connectivity between
the Web server and the Jasmine object-oriented database
server. The primary job of WebLink is that it serves as an
intermediate server between the Web server and the Jasmine
database server. A client’s requests for a new database
connection are sent to the WebLink server via CGI
programs. Then, the WebLink server opens a database
session for that client. After the request for login or data
access is processed, the client can access data from Jasmine

by using subsequent HTML pages. When the client closes

64

2014. 2



AR HoIEHlo| 20| CISHISS flet SAIY HMof 718

Client 1

Client 2 Web Server

Client n

WebLink Server Jasmine Server

(Figure 1) Architecture of the Jasmine Object-Oriented Database (10)

the connection, the database session opened for that client is
closed.

Many Web database systems are based on OODBs
[4,18,19,20] since object models are suitable for representing
complex multimedia data types in Web databases. Also,
multiple inheritance is a fundamental concern in OODBs
since new objects may be derived from existing objects in
modular design. In Web database environments, transactions
are naturally long, navigating objects from many classes, and
must processed quickly online. Therefore, it is very
important to have an efficient concurrency control scheme
that allows many transactions, which access multiple classes
with multiple inheritance to be processed at the same time.
The concurrency control scheme should also meet the
response time requirements for a large number of users
connected through the Internet. Our aim is to develop a
concurrency control scheme that can be used for Web
applications to meet such requirements.

This paper is organized as follows. In Section 2, two
existing schemes, implicit locking and explicit locking, are
discussed. In Section 3, a new scheme, called scheme, is
proposed. In Section 4, the correctness of the MIIL scheme
is proved. Finally, conclusions and future work are given in
Section 5.

2. Related Works

These existing works deal with three features of access:
conflicts among methods, class hierarchy locking, and nested
method invocations.

In order to illustrate each type of access, consider the
following Figure 2. Assume that class vehicle has four

attributes id, color, drivetrain and manufacturer and class
company has three attributes name, location, and president.
Class employee has three attributes ssn, name, age.

Vehicle o

selor+
dvetrame

Employee
SSN¢
name+
age+

Automobile

Domesticautomebile Aut ; Trutk o

DomesticAut Ja )

attribute’domain link

— 13553005 link

(Figure 2) An OODB Schema

2.1. Conflicts Among Methods

In general, there are two types of access to an object :
instance access and class definition access [1]. An instance
access consists of consultations and modifications of
attribute values in an instance or a set of instances. A class
definition access includes consulting class definition,
adding/deleting an attribute or a method, changing the
implementation code of a method or changing the
inheritance relationship between classes, etc. In Figure 2, for
class vehicle, a possible instance access is a modification of
the attribute color of an instance, and a possible class
definition access is changing domain of the attribute id
from integer to character.

In OODBs, oneof the main concerns is to increase
concurrency among methods so that more transactions can

el

b= QlE{Hl HESE| (15319)

65



AR HoIEHlo| 20| CISHISS flet SAIY HMof 718

run in parallel. Otherwise, aborting or blocking a transaction
to meet database consistency may waste system resources or
delay other transactions. Commutativity is a widely used
criterion to determine whether a method can run
concurrently with those in progress on the same object [14].
Two methods commute if their execution orders do not
affect the results of the methods. Two methods conflict with
each other if they do not commute.

Two types of access to an object induce three different
types of conflicts among accesses to a class: conflicts
between instance accesses, conflicts between class definition
accesses, and conflict between instance access and class
definition access. For example, a conflict between instance
accesses occurs if two instance methods are trying to modify
an attribute value of the same instance at the same time.
Also, updating the same class definition such as modifying
the implementation code of the same instance method at the
same time  induces conflict between class definition

accesses.

2.2. Nested Method Invocation

In OODBs, objects can have nested structures. That is, an
object can be composed of complex objects or atomic
objects. For example, in Figure 2, an object vehicle can
consist of three atomic objects (i.e., id, color, and drivetrain)
and a complex object manufacturer. It is natural that, in
OODBs, each class can define its own method and a
method on a class can invoke another method on its
subobject (also called nested method invocation) [16].

In OODBs, two different objects can share a common
object in anunderlying hierarchy [6]. We call the common
object a referentially shared object (RSO). Once again, in
Figure 1, two different instance objects vehicles may share
the same instance object company in an underlying nested
object hierarchy. Thus, methods on different objects may not
commute [16]. The RSO (also called non-disjoint complex
object) is a fundamental concern of OODB since new
objects may be composed of existing objects in modular
design as indicated in [17]. Thus, a nested object hierarchy
may result in referential sharing.

Existing works have many disadvantages as follows.
Forconflicts among methods, application programmers have a
burden to provide commutativity relationships for instance
access. That is, in order to provide better concurrency
among methods, application programmers should know
possible states of objects and results of each method. Also,
for class definition access, existing works either provide less
concurrency due to big locking granularity or incur too
much run-time overhead for higher concurrency. For class
hierarchy locking, existing studies, which can be classified
into two types (i.e., explicit locking and implicit locking),
incur too much locking overhead and aim at a special type
of access to class hierarchy (i.e., explicit locking aims at
access to a higher-level class of the hierarchy while implicit
locking aims at access to a class near the leaf-level). For
nested method invocations, either concurrency is still limited
since semantic information is not utilized or too much
run-time overhead is incurred since locks are required for
each atomic operation. Also, most existing studies do not
consider referentially shared objects (non-disjoint complex
objects) which is a necessary condition for modular design
in an OODB [17].

2.3. Class Hierarchy Locking

In explicit locking, for an MCA access such as class
definition write, a lock is set not only the class, say C, but
also on each subclass of C on the class hierarchy. For an
SCA access such as class definition read, a lock is set for
only the class to be accessed (also called target class). Thus,
for an MCA access, transaction accessing a class near the
leaf level of a class hierarchy will require fewer locks than
transactions accessing a class near the root of a class
hierarchy. But, it increases the number of locks required by
transactions accessing a class at a higher level in the class
hierarchy.

In implicit locking, setting a lock on a class C requires
extra locking on a path from C to its root as well as on C.
Intention locks [12] are set on all ancestors of a class before
the target class is locked. An intention lock on a class
indicatesthat some lock is held on a subclass of the class.
That is, the purpose of intention locks is to detect the
possible conflicts earlier. For an MCA access on a target

66

2014. 2



AR HoIEHlo| 20| CISHISS flet SAIY HMof 718

Implicit locking in Orion  Explicit locking in O,

IW lock A
1§
IW lock B
2
IW lock C
2
W lock D Cw lock
5
E Cw lock
2
F Cw lock

Implicit locking in Orion Explicit locking in O,

IR lock A
{
IR lock B
{
IR lock C
l

R lock D Ir lock
d

E Ir lock
d

F Ir lock

(a) Locking for class definition write in Orion and O, (b) Locking for query in Orion and O3
(Figure 3)

class, locks are not required for every subclass of the target
class. It is sufficient toput a lock on only the target class (in
single inheritance) or locks on the target class and subclasses
of the target class, which have more than one superclass (in
multiple inheritance). Thus, it can reduce lock overhead over
explicit locking. But, implicit locking requires a higher cost
when a target class is near the leaf level in the class
hierarchy due to intention lock overhead.

For example, consider the class hierarchy shown in
Figure 3. Note that two OODBs, Orion [3] and O2 [1], are
chosen for the illustration of two existing works. In order to
update the class definition in class, say D, each scheme
works as in Figure 3.a. For implicit locking, intention locks
IWs corresponding to W (Write) locks are required for all
superclasses on the path from D to the root A. Thus, if
another transaction, say T1, needs to update the class
definition in class A, it does not have to search through each
class in the class hierarchy because of the help of the
intention lock IW on class A. That is, since IW and W
conflict with each other, T1’s lock request is blocked on
class A. On the other hand, an explicit locking does not
require any intention locks. But, it does require a Cw (Class
Write) lock on each subclass of the target class through the
class hierarchy since any modification of the class
definitions in D may affect the definitions of its subclasses.
Also, locking for a query on D (assuming that the query
needs access to all instances of D, E and F) can be done as
in Figure 3 .b.

3. The Multiple Inheritance
Implicit Locking (MIIL)
Scheme

Our proposed scheme called MIIL is based on implicit
locking. The reason wechoose to base the proposed
technique on implicit locking, but not on explicit locking, is
as follows. In this work, our concemn is to reduce locking
overhead for an MCA access on a class, say C, and all of
its subclasses. In explicit locking, as discussed in Section 2,
a lock is set not only on the class C, but also on each
subclass of C on the class hierarchy. On the other hand, in
implicit locking, locks are required on the class C and
subclasses of the class C that have more than one superclass.
Since the implicit locking incurs fewer locks than explicit
locking, our concern is to reduce the locking overhead in
implicit locking.

For SCA access, the MIIL scheme works the same way
as the implicit locking scheme does. The difference is to
deal with MCAaccess in multiple inheritance. Assume that a
target class C needs an MCA lock. In the MIIL scheme, as
in the implicit locking, each superclass along any superclass
chain of C needs an intention lock. The difference is as
follows. In implicit locking, foran MCA access, a lock is
required for all subclasses of the target class C, which have
more than one superclass. But, in the MIIL scheme, lock is

el

b= QlE{Hl HESE| (15319)

67



a. A Class hierarchy

b. Locks required by
implicit locking

©

c. Locks required by
the MIIL scheme

(Figure 4)

required for all subclasses of the target class C, which have
more than one superclass and are directly reachable from
classes other than the target class C and subclasses of C.
That is, the MIIL scheme requires fewer locks than the
implicit locking scheme.

Consider the class hierarchy shown in Figure 4.a. Assume
that a class definition needs to be changed in class F. Also,
assume that one of the superclass chains from F is arbitrarily
chosen so that classes A and C need intention locks. The
implicit locking scheme adopted in Orion [3,8] needs to get
locks as in Figure 4.b. On the other hand, locks are required
as in Figure 4.c if the MIIL scheme is applied. Note that
both schemes necessitate IW mode locks on one of the
superclass chains from F. In the MIIL scheme, only classes
H and I need to be locked since they can be reached directly
from classes E and G, respectively. Note that two classes E
and G do not belong to the class hierarchy rooted at F.

4. Correctness of the MIIL Scheme

In this section, we show that the MIIL scheme performs

better than the implicit locking scheme.

Based on the discussion in Section 3, since the MIIL
scheme incurs fewer or equal number of locks compared
with implicit locking for any kinds of accesses, it is
sufficient to show that the MIIL scheme is correct, that is,
it satisfies serializability [2]. More specifically, we prove
that, for any requester, any conflict with a lock holder is
always detected. With this proof, since the MIIL scheme is
based on two-phase locking, it is guaranteed that the MIIL
scheme satisfies serializability [2].

Claim: The MIIL scheme detects any conflicts between a
lock requester and a lock holder.

Proof:

Assume that a class hierarchy has multiple inheritance. If
not, the MIIL scheme works the same way as the implicit
locking scheme does.

Assume that a class C has subclasses with more than one
superclass and is locked in MCA mode by a lock holder.

68

2014. 2



AR HoIEHlo| 20| CISHISS flet SAIY HMof 718

Assume that a lock requester needs to access class K
where C=K. Note that, if C=K, the conflict will always be
detected on C. Without loss of generality, there are two
cases as follows.

Case a) A lock requester needs an SCA access

If K is a superclass of C, there is no conflict. Also, if
there is neither superclass nor subclass relationship between
C and K, there is no conflict. Assume that K is subclass of
C. In this case, if C is on the same path on which K sets
intention locks, conflict is detected on C. If not, K must get
through one of subclasses of C, say, Ci, which has more
than one superclass. Otherwise, K would not be a subclass
of C. Thus, conflict will be detected on Ci.

Case b) A lock requester needs an MCA access

If K is neither a superclass nor a subclass of C, there are
two cases as follows. If there is no common subclass
between C and K through the subclass chains of C and
Kthere is no conflict. Otherwise, the conflict is detected on
the first common subclass through the subclass chain of both
C and K based on the MIIL scheme.

Assume that K is a superclass of C. Then, if K is on
the same path with C, conflict is detected on K. If not, C
must get through one of subclasses of K, say Ki, which has
more than one superclass. Otherwise, K would not be a
superclass of C. Thus, conflict is detected on Ki. On the
other hand, assume that K is a subclass of C.

If C is on the same path on which K sets intention locks,
conflict will be detected on C. If not, K must get through
one of subclasses of C, say Cj, which has more than one
superclass. Otherwise, K would not be a subclass of C. That
is, conflict is detected on Cj.

From case a) and b), we can conclude that, for any lock
requester, it is guaranteed that its conflicts with a lock
holder are always detected. Since the MIIL scheme is based
on two-phase locking, serializability is guaranteed. In turn,
this means that the MIIL scheme performs better than the

implicit locking scheme.

5. Conclusions and Further Works

Many new database applications such as CAD, CASE,
office automation systems, and artificial intelligence have
emerged. These new areas require advanced modeling
capabilities to handle complex data and complex
relationships among data. In those areas, complex modeling
is impossible or very difficult, if the existing relational data
model is adopted. An object-oriented database is suitable for
such applications, since it provides modeling power as
grouping similar objects into class, and organizing all classes
into a hierarchy where a subclass inherits all definitions
from its superclasses.

In this paper, we presented a locking-based concurrency
control scheme for OODBs called MIIL. The MIIL scheme
is based on the implicit locking scheme but incurs less
locking overhead for the case of multiple class access with
multiple inheritances. We proved theoretically that the MIIL
scheme is correct and has less locking overhead than
implicit locking does. While some concurrency control
techniques require some additional overhead such as access
frequency information on classes and instances [7, 8, 9], the
proposed techniques does not need any kinds of overhead to
reduce locking overhead. Our techniques require only class
hierarchy structure, single inheritance hierarchy and multiple
inheritance hierarchy.

Recently database systems have been used to manage
data for many Web applications. Many of these Web
database systems are based on OODBs since OODBs
provide advanced modeling power for representing complex
multimedia data types in Web databases. Multiple
inheritances are a natural property in OODBs since new
objects may be derived from existing objects in modular
design. In Web databaseenvironments, transactions are
usually navigating objects from many classes that may relate
to each other through inheritance. To guarantee database
correctness  while processing  transactions concurrently
through the Internet, an efficient concurrency control scheme
which reduces locking overhead for MCA access type with

el

b= QlE{Hl HESE| (15319)

69



AR HoIEHlo| 20| CISHISS flet SAIY HMof 718

multiple inheritances is needed. The proposed scheme,
MIIL, is developed to fulfill this need.

Currently we are planning to do a simulation work in
order to compare the proposed work with the implicit
locking scheme. Although the proposed incurs less locking
overhead over the existing the implicit locking theoretically,
we are interested in how the proposed scheme is really
working in the real OODB transaction processing

environments.

The possibledrawback of the MIIL scheme is that it
requires a higher locking overhead when a target class is
near the leaf level in the class hierarchy due to the intention
lock overhead. Thus, we are also developing a new scheme,
which is based on both implicit locking and explicit locking,
in order to reduce the locking overhead for all kinds of
accesses. In this case, we may need additional information

or overhead in order to achieve less locking overhead.

References

[1] M. Cart and J. Ferrie, Integrating Concurrency Control
into an Object-Oriented Database System, 2nd Int.
Conf. on Extending Data Base Technology, Venice,
Italy, pp. 363-377, 1990.

[2] K. Eswaran, J. Gray, R. Lorie, and I. Traiger, The
notion of consistency and predicate locks in a database
system, Communication of ACM, Vol. 19, No. 11, pp.
624-633, 1976.

[3] J. Garza and W. Kim, Transaction Management in an
Object-Oriented Database Systems, Proc. of ACM
SIGMOD Int. Conf. on Management of Data, pp.
3745, 1988.

[4] V. Geetha and N. Sreenath, Semantic Concurrency
Control on Continuously Evolving OODBMS Using
Access Control Lists, 9th International Conference on
Distributed ~ Computing and Internet Technology,
Bhubaneswar, India, pp. 523-534, 2013.

[5] V. Geetha, Semantic Based Concurrency Control in
OODBMS, 2011 International Conference on Recent
Trends in Information Technology, Chennai, India, pp.

1313-1318, 2011.

[6] U. Herrmann, P. Dadam, K. Kuspert, E. Roman, and
G. Schlageter, A Lock Technique for Disjoint and
Non-disjoint Complex Objects, Proceedings of 2
International Conference on Extending Data Base
Technology, Venice, Italy, pp. 219-237, 1990.

[71 W. Jun, A  Multi-granularity = Locking-based
Concurrency Control in  Object-oriented Database
Systems, Journal of Systems and Software, Vol. 54,
No. 3, pp. 201-217, 2000.

[8] W. Jun and L. Gruenwald, An Optimal Locking
Scheme in Object-oriented Database Systems, In
Proceeding of Web-Age Information Management, pp.
95-105, 2000.

[91 W. Jun, Controlling Concurrent Accesses in
Multimedia Database Systems, MDIC 2001, pp. 67-76,
2001.

[10] S. Khoshafian, S. Dasananda and S. Minassian, The
Jasmine Object Database: Multimedia Applications on
the Web, Morgan Kaufinann Publishers, San Francisco,
California, USA, 1999.

[11] W. Kim, Introduction to Object-Oriented Databases,
The MIT Press, Cambridge, MA, USA,1990.

[12] H. Korth and A. Silberschartz, Database System
Concepts, 2nd Edition, McGraw Hill, New York, NY,
USA,1991.

[13] S. Lee and R. Liou, A Multi-Granularity Locking
Model for Concurrency Control in Object-Oriented
Database Systems, [EEE Trans. on Knowledge and
Data Engineering, Vol. 8, No. 1, pp. 144-156, 1996.

[14] C. Malta and J. Martinez, Controlling Concurrent
Accesses in an Object-Oriented Environment, 2nd Int.
Symposium on Database Systems for Advanced
Applications, Tokyo, Japan, pp. 192-200, 1992

[15] C. Malta and J. Martinez,Automating Fine Concurrency
Control in Object-Oriented Databases, 9th IEEE Conf.
on Data Engineering, Vienna, Austria, pp. 253-260,
1993.

[16] P. Muth, T. Rakow, G. Weikum, P. Brossler, and C.
Hasse,  Semantic ~ Concurrency  Control  in
Object-Oriented Database Systems, Proceedings of the
9" IEEE International Conference on Data Engineering,
pp. 233-242, 1993.

70

2014. 2



AR X|E Ho[EH|0|20] THSAHISE 2ot SAIY MO 7|% i

[17] R. Resende, D. Agrawal, and A. Abbadi, Semantic
Locking in Object-Oriented Database Systems,
Proceedings of OOPSLA 94, Portland, Oregon, USA,
pp. 388-402, 1994.

[18] Objectware database (http://www. objectwareinc.com)

(2013).

[19] Ontos database (http://www.ontos.com) (2013).
Objectivity database (http://www. objectivity. com)
(2013).

OXN X200 0

2 A

1985 A7dgta &4

1987 AZoistal oigkd £ (44h

1997'd Univ. of OklahomaZ$ (24

198 ~AA AMEuSsta AFENSH ug
AR Aol ARl w8, FE 54 &, HEGA
E-mail: wocjun@snue.ac.kr

g M7

19974 University of Nebraska-Lincoln (74 311HA})
1997\ ~2003 A=thstn A Qe we
2003 ~ @A =g wEy) 498 u
BAI ROk . AARA 2H] e-Business, SCM

E-mail : skhong017 @dankook.ac.kr

elEUll Yotz (15812)

71



