
Journal of Internet Computing and Services(JICS) 2014. Feb: 15(1): 63-71 63

객체지향 데이터베이스의 다중계승을 위한 동시성 제어 기법 개발☆

Development of a Concurrency Control Technique for Multiple Inheritance
in Object-Oriented Databases

전 우 천1 홍 석 기2*

Woochun Jun Suk-Ki Hong

요 약

인공지능과 웹 데이터베이스와 같은 분야에서는 기존의 관계 데이터 모형보다 더 고급 모델링 기능을 필요로 한다. 이러한 분야

에서 객체지향데이터베이스는 객체를 모아 클래스를 제공하고 또한 클래스 사이에서 상위클래스는 하위 클래스에게 물려주는 계층

구조를 제공하기 때문에 더 좋은 데이터 모형이 될 수 있다.

본 논문의 목적은 객체지향데이터베이스에서 다중 계승을 위한 동시성 제어 기법을 개발하는 것이다. 본 논문에서 제안하는

MIIL(Multiple Inheritance Implicit Locking) 기법은 기존의 Implicit 로킹(Locking) 기법에 기반을 두었다. MIIL 기법은 기존의Implicit 로킹에

서 불필요한 로킹을 제거하였다. 또한 본 논문에서 제안하는 MIIL 기법에서의 Intention 로킹은 기존의 Implicit 로킹기법과 동일하게
작동한다. 본 논문에서 제안한 MIIL 기법은 기존의 Implicit 로킹 기법보다 로킹 오버헤드가 적음을 증명하였다. 또한, 본 논문에서는

단일 계승과 다중 계승 등 계승구조만을 이용함으로써 로킹 오버헤드를 줄이기 위한 추가적인 비용을 필요로 하지 않는다.

☞ 주제어: 객체지향 데이터베이스, 동시성 제어, 로킹 모형, 클래스 계층

ABSTRACT

Currently many non-traditional application areas such as artificial intelligence and web databases require advanced modeling

power than the existing relational data model. In those application areas, object-oriented database (OODB) is better data model since

an OODB can providemodeling power as grouping similar objects into class, and organizing all classes into a hierarchy where a

subclass inherits all definitions from its superclasses.

The purpose of this paper is to develop an OODB concurrency control scheme dealing with multiple inheritance. The proposed

scheme, called Multiple Inheritance Implicit Locking (MIIL), is based on so-called implicit locking. In the proposed scheme, we eliminate

redundant locks that are necessary in the existing implicit locking scheme. Intention locks are required as the existing implicit locking

scheme. In this paper, it is shown that MIIL has less locking overhead than implicit locking does. We use only OODB inheritance

hierarchies, single inheritance and multiple inheritance so that no additional overhead is necessary for reducing locking overhead.

☞ Keywords: Object-oriented Database, Concurrency Control, Locking Model, Class Hierarchy

1. Introduction

Many new database applications such as computer-aided

design (CAD), computer-aided software engineering (CASE),

1 Dept. of Computer Education, Seoul National University of
Education, Seoul,137-742, Korea.

2 Dept. of Business Administration, Dankook University, Jukjeon,
Gyeonggido, 448-701, Korea

* Corresponding author (skhong017@dankook.ac.kr)
[Received 22 October 2013, Reviewed 24 October 2013,
Accepted 2 December 2013]
☆ A preliminary version of this paper appeared in APIC-IST

2013, Aug 12-14, Jeju Island, Korea. This version is
improved considerably from the previous version by including
new results and features.

and office information systems have emerged. These new

areas require advanced modeling capabilities to handle

complex data and complex relationships among data. In

those areas, complex modeling is impossible or very

difficult, if the existing relational data model is adopted. An

OODB is suitable for such applications, since it provides

modeling power as grouping similar objects into class, and

organizing all classes into a hierarchy where a subclass

inherits all definitions from its superclasses.

In [11], an OODB is defined as "a collection of objects

whose behavior and state, and the relationships are defined

in accordance with an object-oriented data model". Also, an

object-oriented database system (OODBS) is defined as "a

ISSN 1598-0170 (Print)
ISSN 2287-1136 (Online)
http://www.jksii.or.kr

http://dx.doi.org/10.7472/jksii.2014.15.1.63

객체지향 데이터베이스의 다중계승을 위한 동시성 제어 기법 개발

64 2014. 2

database system which allows the definition and

manipulation of an OODB". The followings are basic

concepts in OODBs [11].

•Object: any real world entity can be an object. Also, each

object is associated with a unique identifier.

•Attribute: an object has one or more attributeswhose

values are also objects. The values of an attribute

represent the state of an object.

•Method: an object has one or more methods which

operates on the state of the object.

•Class: all objects sharing the same set of attributes and

methods can be grouped into a class.

An object belongs to only one class as an instance of the

class.

•Encapsulation: it is the process of packaging the data

elements and functionality together. That is, the state of

an object can be manipulated and read only by invoking

the object’s methods.

•Class hierarchy: the classes form a hierarchy which is

directed-acyclic graph) called a class hierarchy. It is

based on generalization and specialization concepts,

which will be discussed later.

One of the major properties of OODBs is inheritance.

That is, a subclass inherits the definitions defined on its

superclasses. Also, there is an is-a relationship between a

subclass and its superclasses. Thus, an instance of a subclass

is a specialization of its superclasses (and conversely, an

instance of a superclass is a generalization of its subclasses)

[4,5,11]. There are two types of inheritance: single

inheritance and multiple inheritance. In single inheritance, a

class can inherit the class definition from one superclass. On

the other hand, a class inherits the class definition from

more than one class in multiple inheritance.

 In general, there are two types of access to an object:

instance access and class definition access [1]. Especially,

there are two types of access on a class hierarchy: class

definition write and IACH (Instance Access to Class

Hierarchy) [3,11]. IACH represents an instance access to all

or some instances of a given class and itssubclasses. A

query is an example of IACH where a query is defined as

instance reads to a given class and its subclasses [3]. Due to

the inheritance rules, while a class and its instances are

being accessed, the definitions of the class’ superclasses

should not be changed. Also, due to the is-a relationship

between classes, the search space for a query against a class,

says C, may include the instances of all classes on the class

hierarchy rooted at C as well as all instances of C. For

convenience, we call MCA (Multiple Class Access) for class

definition write and IACHs, and SCA (Single Class Access)

for other accesses such as class definition read and instance

access to a single class.

For class hierarchy, there are two locking-based

approaches: explicit locking [1,15] and implicit locking

[3,11,13,14]. These two approaches have different philosophies

dealing with a class hierarchy and will be discussed in

Section 2. In this paper, we present a locking-based

concurrency control scheme for OODBs that is based on

implicit locking but incurs less overhead.

Recently Web database systems have become popular for

many applications because of many advantages of the Web

technology. For example, the multiple-platform issue

becomes undisputable since web browsers are available on

almost all platforms [10]. Also, Web’s hypermedia-based

model becomes familiar to most users. Given the

advantages of the Web technology, the big concern is about

the connectivity between a Web server and a database

server. That is, how cana Web browser be used to access

information stored and managed by commercial database

systems? The common solution is to use Common Gateway

Interface (CGI) programs. These programs become middle

layer applications between the Web server and the database

server. Also, the CGI becomes a standard for interfacing

external applications with Web servers [10].

For example, Figure 1 shows the connectivity between

the Web server and the Jasmine object-oriented database

server. The primary job of WebLink is that it serves as an

intermediate server between the Web server and the Jasmine

database server. A client’s requests for a new database

connection are sent to the WebLink server via CGI

programs. Then, the WebLink server opens a database

session for that client. After the request for login or data

access is processed, the client can access data from Jasmine

by using subsequent HTML pages. When the client closes

객체지향 데이터베이스의 다중계승을 위한 동시성 제어 기법 개발

한국 인터넷 정보학회 (15권1호) 65

(Figure 1) Architecture of the Jasmine Object-Oriented Database [10]

the connection, the database session opened for that client is

closed.

Many Web database systems are based on OODBs

[4,18,19,20] since object models are suitable for representing

complex multimedia data types in Web databases. Also,

multiple inheritance is a fundamental concern in OODBs

since new objects may be derived from existing objects in

modular design. In Web database environments, transactions

are naturally long, navigating objects from many classes, and

must processed quickly online. Therefore, it is very

important to have an efficient concurrency control scheme

that allows many transactions, which access multiple classes

with multiple inheritance to be processed at the same time.

The concurrency control scheme should also meet the

response time requirements for a large number of users

connected through the Internet. Our aim is to develop a

concurrency control scheme that can be used for Web

applications to meet such requirements.

This paper is organized as follows. In Section 2, two

existing schemes, implicit locking and explicit locking, are

discussed. In Section 3, a new scheme, called scheme, is

proposed. In Section 4, the correctness of the MIIL scheme

is proved. Finally, conclusions and future work are given in

Section 5.

2. Related Works

These existing works deal with three features of access:

conflicts among methods, class hierarchy locking, and nested

method invocations.

In order to illustrate each type of access, consider the

following Figure 2. Assume that class vehicle has four

attributes id, color, drivetrain and manufacturer and class

company has three attributes name, location, and president.

Class employee has three attributes ssn, name, age.

(Figure 2) An OODB Schema

2.1. Conflicts Among Methods

In general, there are two types of access to an object :

instance access and class definition access [1]. An instance

access consists of consultations and modifications of

attribute values in an instance or a set of instances. A class

definition access includes consulting class definition,

adding/deleting an attribute or a method, changing the

implementation code of a method or changing the

inheritance relationship between classes, etc. In Figure 2, for

class vehicle, a possible instance access is a modification of

the attribute color of an instance, and a possible class

definition access is changing domain of the attribute id

from integer to character.

In OODBs, oneof the main concerns is to increase

concurrency among methods so that more transactions can

객체지향 데이터베이스의 다중계승을 위한 동시성 제어 기법 개발

66 2014. 2

run in parallel. Otherwise, aborting or blocking a transaction

to meet database consistency may waste system resources or

delay other transactions. Commutativity is a widely used

criterion to determine whether a method can run

concurrently with those in progress on the same object [14].

Two methods commute if their execution orders do not

affect the results of the methods. Two methods conflict with

each other if they do not commute.

Two types of access to an object induce three different

types of conflicts among accesses to a class: conflicts

between instance accesses, conflicts between class definition

accesses, and conflict between instance access and class

definition access. For example, a conflict between instance

accesses occurs if two instance methods are trying to modify

an attribute value of the same instance at the same time.

Also, updating the same class definition such as modifying

the implementation code of the same instance method at the

same time induces conflict between class definition

accesses.

2.2. Nested Method Invocation

In OODBs, objects can have nested structures. That is, an

object can be composed of complex objects or atomic

objects. For example, in Figure 2, an object vehicle can

consist of three atomic objects (i.e., id, color, and drivetrain)

and a complex object manufacturer. It is natural that, in

OODBs, each class can define its own method and a

method on a class can invoke another method on its

subobject (also called nested method invocation) [16].

In OODBs, two different objects can share a common

object in anunderlying hierarchy [6]. We call the common

object a referentially shared object (RSO). Once again, in

Figure 1, two different instance objects vehicles may share

the same instance object company in an underlying nested

object hierarchy. Thus, methods on different objects may not

commute [16]. The RSO (also called non-disjoint complex

object) is a fundamental concern of OODB since new

objects may be composed of existing objects in modular

design as indicated in [17]. Thus, a nested object hierarchy

may result in referential sharing.

Existing works have many disadvantages as follows.

Forconflicts among methods, application programmers have a

burden to provide commutativity relationships for instance

access. That is, in order to provide better concurrency

among methods, application programmers should know

possible states of objects and results of each method. Also,

for class definition access, existing works either provide less

concurrency due to big locking granularity or incur too

much run-time overhead for higher concurrency. For class

hierarchy locking, existing studies, which can be classified

into two types (i.e., explicit locking and implicit locking),

incur too much locking overhead and aim at a special type

of access to class hierarchy (i.e., explicit locking aims at

access to a higher-level class of the hierarchy while implicit

locking aims at access to a class near the leaf-level). For

nested method invocations, either concurrency is still limited

since semantic information is not utilized or too much

run-time overhead is incurred since locks are required for

each atomic operation. Also, most existing studies do not

consider referentially shared objects (non-disjoint complex

objects) which is a necessary condition for modular design

in an OODB [17].

2.3. Class Hierarchy Locking

In explicit locking, for an MCA access such as class

definition write, a lock is set not only the class, say C, but

also on each subclass of C on the class hierarchy. For an

SCA access such as class definition read, a lock is set for

only the class to be accessed (also called target class). Thus,

for an MCA access, transaction accessing a class near the

leaf level of a class hierarchy will require fewer locks than

transactions accessing a class near the root of a class

hierarchy. But, it increases the number of locks required by

transactions accessing a class at a higher level in the class

hierarchy.

In implicit locking, setting a lock on a class C requires

extra locking on a path from C to its root as well as on C.

Intention locks [12] are set on all ancestors of a class before

the target class is locked. An intention lock on a class

indicatesthat some lock is held on a subclass of the class.

That is, the purpose of intention locks is to detect the

possible conflicts earlier. For an MCA access on a target

객체지향 데이터베이스의 다중계승을 위한 동시성 제어 기법 개발

한국 인터넷 정보학회 (15권1호) 67

(a) Locking for class definition write in Orion and O2 (b) Locking for query in Orion and O2

(Figure 3)

class, locks are not required for every subclass of the target

class. It is sufficient toput a lock on only the target class (in

single inheritance) or locks on the target class and subclasses

of the target class, which have more than one superclass (in

multiple inheritance). Thus, it can reduce lock overhead over

explicit locking. But, implicit locking requires a higher cost

when a target class is near the leaf level in the class

hierarchy due to intention lock overhead.

For example, consider the class hierarchy shown in

Figure 3. Note that two OODBs, Orion [3] and O2 [1], are

chosen for the illustration of two existing works. In order to

update the class definition in class, say D, each scheme

works as in Figure 3.a. For implicit locking, intention locks

IWs corresponding to W (Write) locks are required for all

superclasses on the path from D to the root A. Thus, if

another transaction, say T1, needs to update the class

definition in class A, it does not have to search through each

class in the class hierarchy because of the help of the

intention lock IW on class A. That is, since IW and W

conflict with each other, T1’s lock request is blocked on

class A. On the other hand, an explicit locking does not

require any intention locks. But, it does require a Cw (Class

Write) lock on each subclass of the target class through the

class hierarchy since any modification of the class

definitions in D may affect the definitions of its subclasses.

Also, locking for a query on D (assuming that the query

needs access to all instances of D, E and F) can be done as

in Figure 3 .b.

3. The Multiple Inheritance

Implicit Locking (MIIL)

Scheme

Our proposed scheme called MIIL is based on implicit

locking. The reason wechoose to base the proposed

technique on implicit locking, but not on explicit locking, is

as follows. In this work, our concern is to reduce locking

overhead for an MCA access on a class, say C, and all of

its subclasses. In explicit locking, as discussed in Section 2,

a lock is set not only on the class C, but also on each

subclass of C on the class hierarchy. On the other hand, in

implicit locking, locks are required on the class C and

subclasses of the class C that have more than one superclass.

Since the implicit locking incurs fewer locks than explicit

locking, our concern is to reduce the locking overhead in

implicit locking.

For SCA access, the MIIL scheme works the same way

as the implicit locking scheme does. The difference is to

deal with MCAaccess in multiple inheritance. Assume that a

target class C needs an MCA lock. In the MIIL scheme, as

in the implicit locking, each superclass along any superclass

chain of C needs an intention lock. The difference is as

follows. In implicit locking, foran MCA access, a lock is

required for all subclasses of the target class C, which have

more than one superclass. But, in the MIIL scheme, lock is

객체지향 데이터베이스의 다중계승을 위한 동시성 제어 기법 개발

68 2014. 2

 a. A Class hierarchy b. Locks required by c. Locks required by

 implicit locking the MIIL scheme

(Figure 4)

required for all subclasses of the target class C, which have

more than one superclass and are directly reachable from

classes other than the target class C and subclasses of C.

That is, the MIIL scheme requires fewer locks than the

implicit locking scheme.

Consider the class hierarchy shown in Figure 4.a. Assume

that a class definition needs to be changed in class F. Also,

assume that one of the superclass chains from F is arbitrarily

chosen so that classes A and C need intention locks. The

implicit locking scheme adopted in Orion [3,8] needs to get

locks as in Figure 4.b. On the other hand, locks are required

as in Figure 4.c if the MIIL scheme is applied. Note that

both schemes necessitate IW mode locks on one of the

superclass chains from F. In the MIIL scheme, only classes

H and I need to be locked since they can be reached directly

from classes E and G, respectively. Note that two classes E

and G do not belong to the class hierarchy rooted at F.

4. Correctness of the MIIL Scheme

In this section, we show that the MIIL scheme performs

better than the implicit locking scheme.

Based on the discussion in Section 3, since the MIIL

scheme incurs fewer or equal number of locks compared

with implicit locking for any kinds of accesses, it is

sufficient to show that the MIIL scheme is correct, that is,

it satisfies serializability [2]. More specifically, we prove

that, for any requester, any conflict with a lock holder is

always detected. With this proof, since the MIIL scheme is

based on two-phase locking, it is guaranteed that the MIIL

scheme satisfies serializability [2].

Claim: The MIIL scheme detects any conflicts between a

lock requester and a lock holder.

Proof:

Assume that a class hierarchy has multiple inheritance. If

not, the MIIL scheme works the same way as the implicit

locking scheme does.

Assume that a class C has subclasses with more than one

superclass and is locked in MCA mode by a lock holder.

객체지향 데이터베이스의 다중계승을 위한 동시성 제어 기법 개발

한국 인터넷 정보학회 (15권1호) 69

Assume that a lock requester needs to access class K

where C=K. Note that, if C=K, the conflict will always be

detected on C. Without loss of generality, there are two

cases as follows.

Case a) A lock requester needs an SCA access

If K is a superclass of C, there is no conflict. Also, if

there is neither superclass nor subclass relationship between

C and K, there is no conflict. Assume that K is subclass of

C. In this case, if C is on the same path on which K sets

intention locks, conflict is detected on C. If not, K must get

through one of subclasses of C, say, Ci, which has more

than one superclass. Otherwise, K would not be a subclass

of C. Thus, conflict will be detected on Ci.

Case b) A lock requester needs an MCA access

If K is neither a superclass nor a subclass of C, there are

two cases as follows. If there is no common subclass

between C and K through the subclass chains of C and

K,there is no conflict. Otherwise, the conflict is detected on

the first common subclass through the subclass chain of both

C and K based on the MIIL scheme.

Assume that K is a superclass of C. Then, if K is on

the same path with C, conflict is detected on K. If not, C

must get through one of subclasses of K, say Ki, which has

more than one superclass. Otherwise, K would not be a

superclass of C. Thus, conflict is detected on Ki. On the

other hand, assume that K is a subclass of C.

If C is on the same path on which K sets intention locks,

conflict will be detected on C. If not, K must get through

one of subclasses of C, say Cj, which has more than one

superclass. Otherwise, K would not be a subclass of C. That

is, conflict is detected on Cj.

From case a) and b), we can conclude that, for any lock

requester, it is guaranteed that its conflicts with a lock

holder are always detected. Since the MIIL scheme is based

on two-phase locking, serializability is guaranteed. In turn,

this means that the MIIL scheme performs better than the

implicit locking scheme.

5. Conclusions and Further Works

Many new database applications such as CAD, CASE,

office automation systems, and artificial intelligence have

emerged. These new areas require advanced modeling

capabilities to handle complex data and complex

relationships among data. In those areas, complex modeling

is impossible or very difficult, if the existing relational data

model is adopted. An object-oriented database is suitable for

such applications, since it provides modeling power as

grouping similar objects into class, and organizing all classes

into a hierarchy where a subclass inherits all definitions

from its superclasses.

In this paper, we presented a locking-based concurrency

control scheme for OODBs called MIIL. The MIIL scheme

is based on the implicit locking scheme but incurs less

locking overhead for the case of multiple class access with

multiple inheritances. We proved theoretically that the MIIL

scheme is correct and has less locking overhead than

implicit locking does. While some concurrency control

techniques require some additional overhead such as access

frequency information on classes and instances [7, 8, 9], the

proposed techniques does not need any kinds of overhead to

reduce locking overhead. Our techniques require only class

hierarchy structure, single inheritance hierarchy and multiple

inheritance hierarchy.

Recently database systems have been used to manage

data for many Web applications. Many of these Web

database systems are based on OODBs since OODBs

provide advanced modeling power for representing complex

multimedia data types in Web databases. Multiple

inheritances are a natural property in OODBs since new

objects may be derived from existing objects in modular

design. In Web databaseenvironments, transactions are

usually navigating objects from many classes that may relate

to each other through inheritance. To guarantee database

correctness while processing transactions concurrently

through the Internet, an efficient concurrency control scheme

which reduces locking overhead for MCA access type with

객체지향 데이터베이스의 다중계승을 위한 동시성 제어 기법 개발

70 2014. 2

multiple inheritances is needed. The proposed scheme,

MIIL, is developed to fulfill this need.

Currently we are planning to do a simulation work in

order to compare the proposed work with the implicit

locking scheme. Although the proposed incurs less locking

overhead over the existing the implicit locking theoretically,

we are interested in how the proposed scheme is really

working in the real OODB transaction processing

environments.

The possibledrawback of the MIIL scheme is that it

requires a higher locking overhead when a target class is

near the leaf level in the class hierarchy due to the intention

lock overhead. Thus, we are also developing a new scheme,

which is based on both implicit locking and explicit locking,

in order to reduce the locking overhead for all kinds of

accesses. In this case, we may need additional information

or overhead in order to achieve less locking overhead.

References

[1] M. Cart and J. Ferrie, Integrating Concurrency Control

into an Object-Oriented Database System, 2nd Int.

Conf. on Extending Data Base Technology, Venice,

Italy, pp. 363-377, 1990.

[2] K. Eswaran, J. Gray, R. Lorie, and I. Traiger, The

notion of consistency and predicate locks in a database

system, Communication of ACM, Vol. 19, No. 11, pp.

624-633, 1976.

[3] J. Garza and W. Kim, Transaction Management in an

Object-Oriented Database Systems, Proc. of ACM

SIGMOD Int. Conf. on Management of Data, pp.

37-45, 1988.

[4] V. Geetha and N. Sreenath, Semantic Concurrency

Control on Continuously Evolving OODBMS Using

Access Control Lists, 9th International Conference on

Distributed Computing and Internet Technology,

Bhubaneswar, India, pp. 523-534, 2013.

[5] V. Geetha, Semantic Based Concurrency Control in

OODBMS, 2011 International Conference on Recent

Trends in Information Technology, Chennai, India, pp.

1313-1318, 2011.

[6] U. Herrmann, P. Dadam, K. Kuspert, E. Roman, and

G. Schlageter, A Lock Technique for Disjoint and

Non-disjoint Complex Objects, Proceedings of 2
nd

International Conference on Extending Data Base

Technology, Venice, Italy, pp. 219-237, 1990.

[7] W. Jun, A Multi-granularity Locking-based

Concurrency Control in Object-oriented Database

Systems, Journal of Systems and Software, Vol. 54,

No. 3, pp. 201-217, 2000.

[8] W. Jun and L. Gruenwald, An Optimal Locking

Scheme in Object-oriented Database Systems, In

Proceeding of Web-Age Information Management, pp.

95-105, 2000.

[9] W. Jun, Controlling Concurrent Accesses in

Multimedia Database Systems, MDIC 2001, pp. 67-76,

2001.

[10] S. Khoshafian, S. Dasananda and S. Minassian, The

Jasmine Object Database: Multimedia Applications on

the Web, Morgan Kaufmann Publishers, San Francisco,

California, USA, 1999.

[11] W. Kim, Introduction to Object-Oriented Databases,

The MIT Press, Cambridge, MA, USA,1990.

[12] H. Korth and A. Silberschartz, Database System

Concepts, 2nd Edition, McGraw Hill, New York, NY,

USA,1991.

[13] S. Lee and R. Liou, A Multi-Granularity Locking

Model for Concurrency Control in Object-Oriented

Database Systems, IEEE Trans. on Knowledge and

Data Engineering, Vol. 8, No. 1, pp. 144-156, 1996.

[14] C. Malta and J. Martinez, Controlling Concurrent

Accesses in an Object-Oriented Environment, 2nd Int.

Symposium on Database Systems for Advanced

Applications, Tokyo, Japan, pp. 192-200, 1992

[15] C. Malta and J. Martinez,Automating Fine Concurrency

Control in Object-Oriented Databases, 9th IEEE Conf.

on Data Engineering, Vienna, Austria, pp. 253-260,

1993.

[16] P. Muth, T. Rakow, G. Weikum, P. Brossler, and C.

Hasse, Semantic Concurrency Control in

Object-Oriented Database Systems, Proceedings of the

9
th IEEE International Conference on Data Engineering,

pp. 233-242, 1993.

객체지향 데이터베이스의 다중계승을 위한 동시성 제어 기법 개발

한국 인터넷 정보학회 (15권1호) 71

◐ 저 자 소 개 ◑

전 우 천

1985년 서강대학교 졸업
1987년 서강대학교 대학원 졸업 (석사)

1997년 Univ. of Oklahoma졸업 (박사)

1998년～현재 서울교육대학교 컴퓨터교육과 교수
관심분야 : 장애인 정보화 교육, 정보 통신 윤리, 정보영재
E-mail: wocjun@snue.ac.kr

홍 석 기

1997년 University of Nebraska-Lincoln (경영학박사)

1997년～2003년 건국대학교 경영학과 교수
2003년～현재 단국대학교(죽전) 경영학과 교수
관심분야 : 생산시스템, e-Business, SCM

E-mail : skhong017@dankook.ac.kr

[17] R. Resende, D. Agrawal, and A. Abbadi, Semantic

Locking in Object-Oriented Database Systems,

Proceedings of OOPSLA 94, Portland, Oregon, USA,

pp. 388-402, 1994.

[18] Objectware database (http://www. objectwareinc.com)

(2013).

[19] Ontos database (http://www.ontos.com) (2013).

Objectivity database (http://www. objectivity. com)

(2013).

