DOI QR코드

DOI QR Code

Hydrocarbon Gas Permeation Characteristics of PTMSP/LDH Composite Membranes

PTMSP/LDH 복합막의 탄화수소 기체투과 특성

  • Received : 2014.08.20
  • Accepted : 2014.12.04
  • Published : 2014.12.31

Abstract

PTMSP/LDH composite membranes were prepared by adding 0, 1, 3, and 5 wt% LDH contents to PTMSP. The gas permeability and selectivity for $H_2$, $N_2$, $CH_4$, $C_3H_8$, $n-C_4H_{10}$ were investigated as a function of LDH content. As LDH content of PTMSP/LDH composite membranes increased to 5 wt%, the gas permeability for $H_2$ and $N_2$ gradually decreased, while $n-C_4H_{10}$ permeability rapidly increased. The gas permeability for $CH_4$ and $C_3H_8$ was found to decrease for the membranes with LDH content range of 0~3 wt%, however increase in the range of 3~5 wt%. As LDH content of PTMSP/LDH composite membranes increased to 5 wt%, the selectivity of membranes gradually increased for $H_2$, $N_2$, $CH_4$, $C_3H_8$, $n-C_4H_{10}$ over $H_2$, $N_2$. However the selectivity for $C_3H_8$ and $n-C_4H_{10}$ over $CH_4$ increased in the range of LDH content 0~3 wt% but decreased in the range of 3~5 wt%. The $CH_4$ and $n-C_4H_{10}$ selectivity over $H_2$ and $N_2$ increased as $CH_4$ and $n-C_4H_{10}$ permeability increased. The $n-C_4H_{10}$ selectivity over $CH_4$ increased with increasing $n-C_4H_{10}$ permeability up to 182,000 barrer and decreased above 182,000 barrer of $n-C_4H_{10}$ permeability. The $C_3H_8$ selectivity over $H_2$ and $N_2$ was found to decrease as the $C_3H_8$ permeability increased from 46,000 to 50,000 barrer, but to increase with increasing permeability from 50,000 to 52,300 barrer and decrease again with increasing permeability from 52,300 to 60,000 barrer. The $C_3H_8$ selectivity over $CH_4$ was found to decrease with increasing $C_3H_8$ permeability up to 52,300 barrer but increase above 52,300 barrer.

PTMSP[Poly(1-trimethylsilyl-1-propyne)]에 LDH (layered double hydroxide)의 함량을 0, 1, 3, 5 wt%로 달리하여 PTMSP/LDH 복합막을 제조하고, PTMSP/LDH 복합막의 LDH 함량에 따른 $H_2$, $N_2$, $CH_4$, $C_3H_8$, $n-C_4H_{10}$의 기체투과도와 선택도를 조사하였다. PTMSP/LDH 복합막의 LDH 함량이 0~5 wt%로 증가하면 $H_2$$N_2$의 투과도는 점차 감소하였고, $n-C_4H_{10}$의 투과도는 급격히 증가하였다. 그리고 $CH_4$$C_3H_8$의 투과도는 0~3 wt% 범위에서는 감소하고 3~5 wt% 범위에서는 증가하였다. PTMSP/LDH 복합막의 LDH 함량이 5 wt%로 증가하면 $H_2$$N_2$에 대한 $H_2$, $N_2$, $CH_4$, $C_3H_8$, $n-C_4H_{10}$의 선택도는 점차 증가하였고, $CH_4$에 대한 $C_3H_8$$n-C_4H_{10}$의 선택도는 0~3 wt% 범위에서는 증가하고, 3~5 wt% 범위에서는 감소하였다. PTMSP/LDH 복합막의 $CH_4$$n-C_4H_{10}$의 투과도가 증가하면 $H_2$$N_2$에 대한 $CH_4$$n-C_4H_{10}$의 선택도는 증가하였고, $n-C_4H_{10}$의 투과도가 증가하면 $CH_4$에 대한 $n-C_4H_{10}$의 선택도는 $n-C_4H_{10}$의 투과도 182,000 barrer까지는 증가하다가 그 이상에서는 감소하였다. $C_3H_8$의 투과도가 증가하면 $H_2$$N_2$에 대한 $C_3H_8$의 선택도는 $C_3H_8$의 투과도 46,000~50,000 barrer 범위에서는 감소하고 50,000~52,300 barrer 범위에서 증가하였고 52,300~60,000 barrer 범위에서는 감소하였다. 그리고 $C_3H_8$의 투과도가 증가하면 $CH_4$에 대한 $C_3H_8$의 선택도는 52,300 barrer까지는 급격히 감소하였고, 그 이상에서는 급격히 증가하였다.

Keywords

References

  1. S. H. Lee, C. K. Yeom, H. Y. Song, and J. M. Lee, "Influence of concentration polarization phenomenon on the vapor permeation behavior of VOCs/$N_2$ mixture through PDMS membrane", Membrane Journal, 11, 1 (2001).
  2. C. S. Lee, E. H. Cho, S. Y. Ha, and J. W. Rhim, "Gas permeation properties of hydrocarbon/$N_2$ mixture through PEI-PDMS hollow fiber composite membraes", Membrane Journal, 22, 251 (2012).
  3. S. I. Semenova, "Polymer membranes for hydrocarbon separation and removal", J. Membr. Sci., 231, 189 (2004). https://doi.org/10.1016/j.memsci.2003.11.022
  4. R. W. Backer, "Future directions of membrane gas separation technology", Ind. Eng. Chem. Res., 41, 1393 (2002). https://doi.org/10.1021/ie0108088
  5. T. K. Poddar and K. K. Sirkar, "A hybrid of vapor permeation and membrane based absorption-stripping for VOC removal and recovery from gaseous emissions", J. Membr. Sci., 132, 229 (1997). https://doi.org/10.1016/S0376-7388(97)00070-7
  6. R. W. Baker, J. G. Wijmans, and J. H. Kaschemekat, "The design of membrane vapor-gas separation system", J. Membr. Sci., 151, 55 (1998). https://doi.org/10.1016/S0376-7388(98)00248-8
  7. R. D. Raharjo, B. D. Freeman, and E. S. Sanders, "Pure and mixed gas $CH_4$ and n-$C_4H_{10}$ sorption and dilation in poly(1-trimethylsilyl-1-propyne)", Polymer, 48, 6097 (2007). https://doi.org/10.1016/j.polymer.2007.07.057
  8. T. C. Merkel, Z. He, and I. Pinnau, "Effect of nanoparticles on gas sorption and transport in poly(1-trimethylsilyl-1-propyne)", Macromolecules, 36, 6844 (2003). https://doi.org/10.1021/ma0341566
  9. T. Kuila, H. Acharya, S. K. Srivastava, and A. K. Bhowmich, "Synthesis and characterization of ethylenevinyl acetate/Mg-Al layered double hydroxide nanocomposites", J. Appl. Polym. Sci., 104, 1845 (2007). https://doi.org/10.1002/app.25840
  10. F. Kovanda, E. Jindova, B. Dousova, D. Kolousek, J. Plestil, and Z. Sedlakova, "Layered double hydroxides intercalated with organic anions and their application in preparation of LDH/polymer nanocomposites", Acta Geodyn. Geomater., 6, 111 (2009).
  11. S. Y. Kang and H. K. Lee, "Gas permeation properties of ethylene vinyl acetate/Co-Al Layered Double Hydroxide", Membrane Journal, 20, 290 (2010).
  12. L. Du, B. Qu, Y. Meng, and Q. Zhu, "Structural characterization and thermal and mechanical properties of poly(propylene carbonate)/MgAl-LDH exfoliation nanocomposite via solution intercalation", Compos. Sci. Technol., 66, 913 (2006). https://doi.org/10.1016/j.compscitech.2005.08.012
  13. T. Masuda, E. Isobe, and T. Higashimura, "Polymerization of poly(1-trimethylsilyl-1-propyne) by halides of niobium(v) and tantaium(v) and polymer properties", Macromolecules, 18, 841 (1985). https://doi.org/10.1021/ma00147a003
  14. Y. E. Jeong and S. L. Hong, "Gas Permeation Properties of LDH-Filled PTMSP Composite Membranes", Membrane Journal, 22, 309 (2012).
  15. J. M. Herrera-Alonso, Z. Sedlakova, and E. Marand, "Gas transport properties of polyacrylate/clay nanocomposites prepared via emulsion polymerizstion", J. Membr. Sci., 363, 48 (2010). https://doi.org/10.1016/j.memsci.2010.07.014