DOI QR코드

DOI QR Code

Crystallization of Amorphous Silicon Films Using Joule Heating

  • Ro, Jae-Sang (Department of Materials Science and Engineering, Hongik University)
  • Received : 2014.02.06
  • Accepted : 2014.02.22
  • Published : 2014.02.28

Abstract

Joule heat is generated by applying an electric filed to a conductive layer located beneath or above the amorphous silicon film, and is used to raise the temperature of the silicon film to crystallization temperature. An electric field was applied to an indium tin oxide (ITO) conductive layer to induce Joule heating in order to carry out the crystallization of amorphous silicon. Polycrystalline silicon was produced within the range of a millisecond. To investigate the kinetics of Joule-heating induced crystallization (JIC) solid phase crystallization was conducted using amorphous silicon films deposited by plasma enhanced chemical vapor deposition and using tube furnace in nitrogen ambient. Microscopic and macroscopic uniformity of crystallinity of JIC poly-Si was measured to have better uniformity compared to that of poly-Si produced by other methods such as metal induced crystallization and Excimer laser crystallization.

Acknowledgement

Grant : Development of Heat Treatment Processes for Fabrication of Next-Generation Flat Panel Displays and Semiconductor Devices Using Rapid Heating Methods

Supported by : KEIT

References

  1. A. T. Voutsas, M. K. Hatalis, J. Electrochem. Soc., 139 (1992) 2659. https://doi.org/10.1149/1.2221280
  2. R. S. Wagner, W. C. Ellis, Appl. Phys. Lett., 4 (1964) 89. https://doi.org/10.1063/1.1753975
  3. S.-W. Lee, S.-K. Joo, IEEE Electron Dev. Lett., 17 (1996) 160. https://doi.org/10.1109/55.485160
  4. J. S. Im, H. J. Kim, M. O. Thompson, Appl. Phys. Lett., 63 (1993) 2969.
  5. S.-I Jun, Y.-H. Yang, J.-B. Lee, D.-K. Choi, Appl. Phys. Lett., 75 (1999) 2235. https://doi.org/10.1063/1.124975
  6. J. Jang, J. Y. Oh, S. K. Kim, Y. J. Choi, S. Y. Yoon, C. O. Kim, Nature, 395 (1998) 481. https://doi.org/10.1038/26711
  7. S. Y. Yoon, J. Y. Oh, C. O. Kim, J. Jang, J. Appl. Phys., 84 (1998) 6463. https://doi.org/10.1063/1.368887
  8. T. Sameshima, K. Ozaki, N. Andoh, Appl. Phys., A 71 (2000) 1. https://doi.org/10.1007/PL00021152
  9. T. Sameshima, N. Andoh, H. Takahashi, J. Appl. Phys., 89 (2001) 5362. https://doi.org/10.1063/1.1367405
  10. T. Sameshima, Y. Kaneko, N. Andoh, Appl. Phys., A 73 (2001) 419. https://doi.org/10.1007/s003390100900
  11. J.-S. Ro, W.-E. Hong, SID Digest of Technical Papers (2006) 1280.
  12. Samsung Corning Precision Glass Inc., www.samsungscp.co.kr.
  13. I.-W. Wu, A. Chiang, M. Fuse, L. Ovecoglu, T. Y. Huang, J. Apply. Phys., 65 (1989) 4036. https://doi.org/10.1063/1.343327
  14. W.-E. Hong, J.-S. Ro, J. Appl. Phys., 114 (2013) 073511. https://doi.org/10.1063/1.4818949

Cited by

  1. Self-sustained cyclic tin induced crystallization of amorphous silicon vol.30, pp.20, 2015, https://doi.org/10.1557/jmr.2015.251