DOI QR코드

DOI QR Code

ALBC3 합금의 해수 내 전기화학적 특성에 미치는 쇼트피닝 분사압력의 영향

Effects of Shot Peening Projection Pressure on Electrochemical Characteristics of ALBC3 Alloy in Seawater

  • 한민수 (목포해양대학교 기관시스템공학부) ;
  • 임명환 (목포해양대학교 실습선) ;
  • 김성종 (목포해양대학교 기관시스템공학부)
  • Han, Min-Su (Division of Marine System Engineering, Mokpo Maritime University) ;
  • Im, Myeong-Hwan (Training Ship, Mokpo Maritime University) ;
  • Kim, Seong-Jong (Division of Marine System Engineering, Mokpo Maritime University)
  • 투고 : 2014.01.27
  • 심사 : 2014.02.18
  • 발행 : 2014.02.28

초록

The effects of shot peening pressure on electrochemical and surface morphological characteristics of ALBC3 alloy were investigated in this work. The surface hardness of ALBC3 alloy was improved by shot peening process under all shot peening pressures between 2 and 5 bar, and the hight value of surface hardness was observed to be about 420 Hv at 4 bar of the shot peening pressure. The shot peened surface presented very rough surface due to shot ball collision. The result of anodic potentiodynamic polarization in seawater revealed that there is no significant difference between the shot peened and non-shot peened specimen in terms of corrosion characteristics. Therefore, the optimum projection pressure is determined to be 4 bar.

키워드

참고문헌

  1. J. K. Xenophon, SAE, 891932 (1989).
  2. D. Y. Lee, Trans. Korean Soc. Mech. Eng. A, 28 (1988) 313.
  3. K. D. Park, C. G. Jung, J. Ocean Eng. Tech., 15 (2001) 93.
  4. W. F. Brown, J. E. Strawley, ASTM STP 410 (1996) 92.
  5. H. S. Lee, D. S. Kim, J. S. Jung, Y. S. Pyoun, K. Shin, Corros. Sci., 51 (2009) 2826. https://doi.org/10.1016/j.corsci.2009.08.008
  6. X. Y. Wang, D. Y. Li, Electrochim. Acta, 47 (2002) 3939. https://doi.org/10.1016/S0013-4686(02)00365-1
  7. K. D. Park, J. Y. Lee, W. T. Ki, Y. J. Shin, Journal of the Korea Society of Manufacturing Process Engineers, 6 (2007) 62.
  8. K. D. Park Y. J. Sin, D. U. Kim, J. Korean Soc. Mar. Eng., 30 (2006) 731.
  9. K. J. Ha, K. D. Park, J. Ocean Eng. and Tech., 17 (2003) 39.
  10. S. K. Cheong, J. H. Nam, D. L. Kou, S. N. Ro, IJASS, 33 (2005) 60.
  11. T. W. Kim, Z. R. Yang, D. H. Na, Y. S. Lee, Trans. Korean Soc. Mech. Eng. A, 35 (2011) 1369. https://doi.org/10.3795/KSME-A.2011.35.11.1369
  12. Y. F. Al-Obiad, J. Appl. Mech., 57 (1990) 307. https://doi.org/10.1115/1.2891990
  13. V. O. Abramov, O. V. Abramov, F. Sommer, O. M. Gradov, O. M. Smirnov, Ultrasonics, 36 (1998) 1013. https://doi.org/10.1016/S0041-624X(98)00027-4
  14. K. J. Kim, H. G. Lim, Y. J. Kim, Corros. Sci. Tech., 23 (1994) 194.
  15. S. K. Min, K. T. Kim, W. S. Hwang, Corros. Sci. Tech., 10 (2011) 125.
  16. K. D. Park, Y. J. Sin, D. U. Kim, Trans. Korean Soc. Mech. Eng. A, 30 (2006) 731. https://doi.org/10.3795/KSME-B.2006.30.8.731
  17. J. A. Wharton, R. C. Barik, G. Kear, R. J. K. Wood, K. R. Stokes, F. C. Walsh, Corros. Sci., 47 (2005) 3336. https://doi.org/10.1016/j.corsci.2005.05.053
  18. S. M. Hong, M. K. Lee, G. H. Kim, K. H. Kim, W. W. Kim, S. I. Hong, J. Kor. Inst. Surf. Eng., 37 (2004) 234.