DOI QR코드

DOI QR Code

Molecular Characteristics of Pseudomonas syringae pv. actinidiae Strains Isolated in Korea and a Multiplex PCR Assay for Haplotype Differentiation

  • Received : 2013.09.12
  • Accepted : 2013.11.04
  • Published : 2014.03.01

Abstract

The molecular features of Pseudomonas syringae pv. actinidiae strains isolated in Korea were compared with strains isolated in Japan and Italy. Sequencing of eight P. syringae pv. actinidiae and three P. syringae pv. theae strains revealed a total of 44 single nucleotide polymorphisms across 4,818 bp of the concatenated alignment of nine genes. A multiplex PCR assay was developed for the detection of P. syringae pv. actinidiae and for the specific detection of recent haplotype strains other than strains isolated since the 1980s in Korea. The primer pair, designated as TacF and TacR, specifically amplified a 545-bp fragment with the genomic DNA of new haplotype of P. syringae pv. actinidiae strains. A multiplex PCR conducted with the TacF/TacR primer pair and the universal primer pair for all P. syringae pv. actinidiae strains can be simultaneously applied for the detection of P. syringae pv. actinidiae and for the differentiation of new haplotype strains.

Keywords

References

  1. Anonymous, 2011. Bacterial canker, kiwifruit-Chile: First report (O'Higgins, Maule). ProMed mail: International Society for Infectious Disease.
  2. Balestra, G. M., Mazzaglia, A., Quattrucci, A., Renzi, M. and Rossetti, A. 2009. Current status of bacterial canker spread on kiwifruit in Italy. Australas. Plant Dis. Notes 4:34-36.
  3. Balestra, G. M., Renzi, M. and Mazzaglia, A. 2010. First report of bacterial canker of Actinidia deliciosa caused by Pseudomonas syringae pv. actinidiae in Portugal. New Dis. Rep. 22:10. https://doi.org/10.5197/j.2044-0588.2010.022.010
  4. Balestra, G. M., Renzi, M. and Mazzaglia, A. 2011. First report of Pseudomonas syringae pv. actinidiae on kiwifruit plants in Spain. New Dis. Rep. 24:10. https://doi.org/10.5197/j.2044-0588.2011.024.010
  5. Balestra, G. M., Taratufolo, M. C., Vinatzer, B. A. and Mazzaglia, A. 2013. A multiplex PCR assay for detection of Pseudomonas syringae pv. actinidiae and differentiation of populations with different geographic origin. Plant Dis. 97:472-478. https://doi.org/10.1094/PDIS-06-12-0590-RE
  6. Bastas, K. and Karakaya, A. 2012. First report of bacterial canker of kiwifruit caused by Pseudomonas syringae pv. actinidiae in Turkey. Plant Dis. 96:452.
  7. Brosius, J., Palmer, M. L., Kennedy, P. J. and Noller, H. F. 1978. Complete nucleotide sequence of a $^{16}S$ ribosomal RNA gene from Escherichia coli. Proc. Natl. Acad. Sci. USA 75:4801-4805. https://doi.org/10.1073/pnas.75.10.4801
  8. Bull, C. T., De Boer, S. H., Denny, T. P., Firrao, G., Fischer-Le Saux, M., Saddler, G. S., Scortichini, M., Stead, D. E. and Takikawa, Y. 2010. Comprehensive list of names of plant pathogenic bacteria, 1980-2007. J. Plant Pathol. 92:551-592.
  9. Chapman, J. R., Taylor, R. K., Weir, B. S., Romberg, M. K., Vanneste, J. L., Luck, J. and Alexander, B. J. R. 2012. Phylogenetic relationships among global populations of Pseudomonas syringae pv. actinidiae. Phytopathology 102:1034-1044. https://doi.org/10.1094/PHYTO-03-12-0064-R
  10. Everett, K. R., Taylor R. K., Romberg, M. K., Rees-George, J., Fullerton, R. A., Vanneste, J. L. and Manning, M. A. 2011. First report of Pseudomonas syringae pv. actinidiae causing kiwifruit bacterial canker in New Zealand. Australas. Plant Dis. Notes 6:67-71. https://doi.org/10.1007/s13314-011-0023-9
  11. Ferrante, P. and Scortichini, M. 2009. Identification of Pseudomonas syringae pv. actinidiae as causal agent of bacterial canker of yellow kiwifruit (Actinidia chinensis Planchon) in central Italy. J. Phytopathol. 157:768-770. https://doi.org/10.1111/j.1439-0434.2009.01550.x
  12. Ferrante, P. and Scortichini, M. 2010. Molecular and phenotypic features of Pseudomonas syringae pv. actinidiae isolated during recent epidemics of bacterial canker on kiwifruit (Actinidia chinensis) in central Italy. Plant Pathol. 59:954-962. https://doi.org/10.1111/j.1365-3059.2010.02304.x
  13. Ferrante, P. and Scortichini, M. 2011. Molecular and phenotypic variability among Pseudomonas avellanae, P. syringae pv. actinidiae and P. syringae pv. theae: the genomospecies 8 sensu Gardan et al. (1999). J. Plant Pathol. 93:659-666.
  14. Gardan, L., Shafik, H., Belouin, S., Brosch, R., Grimont, F. and Grimont, P. A. D. 1999. DNA relatedness among the pathovars of Pseudomonas syringae and description of Pseudomonas tremae sp. nov. and Pseudomonas cannabina sp. nov. (ex Sutic and Dowson 1959). Int. J. Syst. Bacteriol. 49:469-478. https://doi.org/10.1099/00207713-49-2-469
  15. Han, H. S., Koh, Y. J., Hur, J.-S. and Jung, J. S. 2003. Identification and characterization of coronatine-producing Pseudomonas syringae pv. actinidiae. J. Microbiol. Biotechnol. 13:110-118.
  16. Inoue, Y. and Takikawa, Y. 2006. The hrpZ and hrpA genes are variable, and useful for grouping Pseudomonas syringae bacteria. J. Gen. Plant Pathol. 72:26-33. https://doi.org/10.1007/s10327-005-0240-1
  17. Koh, Y. J., Cha, B. J., Chung, H. J. and Lee, D. H. 1994. Outbreak and spread of bacterial canker in kiwifruit. Kor. J. Plant Pathol. 10:68-72.
  18. Koh, Y. J., Kim, G. H., Koh, H. S., Lee, Y. S., Kim, S. C. and Jung, J. S. 2012. Occurrence of a new type of Pseudomonas syringae pv. actinidiae strain of bacterial canker on kiwifruit in Korea. Plant Pathol. J. 28:423-427. https://doi.org/10.5423/PPJ.NT.05.2012.0061
  19. Lane, D. J. 1991. 16S/23S rRNA sequencing. In: Nucleic Acid Techniques in Bacterial Systematics, eds. by E. Stackebrandt and M. Goodfellow, pp 115-175. Wiley, Chichester, UK.
  20. Lee, J. H., Kim, J. H., Kim, G. H., Jung, J. S., Hur, J.-S. and Koh, Y. J. 2005. Comparative analysis of Korean and Japanese strains of Pseudomonas syringae pv. actinidiae causing bacterial canker of kiwifruit. Plant Pathol. J. 21:119-126. https://doi.org/10.5423/PPJ.2005.21.2.119
  21. Lee, Y. S., Koh, H. S., Sohn, S. H., Koh, Y. J. and Jung, J. S. 2012. Genetic diversity among Pseudomonas syringae pv. morsprunorum isolates from Prunus mume in Korea and Japan by comparative sequence analysis of 16S rRNA gene. Plant Pathol. J. 28:295-298. https://doi.org/10.5423/PPJ.NT.02.2012.0032
  22. Mazzaglia, A., Renzi, M. and Balestra, G. M. 2011. Comparison and utilization of different PCR-based approaches for molecular typing of Pseudomonas syringae pv. actinidiae strains from Italy. Can. J. Plant Pathol. 33:8-18. https://doi.org/10.1080/07060661.2010.538556
  23. Mazzaglia, A., Studholme, D. J., Taratufolo, M. C., Cai, R., Almeida, N. F., Goodman, T., Guttman, D. S., Vinatzer, B. A. and Balestra, G. M. 2012. Pseudomonas syringae pv. actinidiae (PSA) isolates from recent bacterial canker of kiwifruit outbreaks belong to the same genetic lineage. PLoS One 7:e36518. https://doi.org/10.1371/journal.pone.0036518
  24. Rees-George, J., Vanneste, J. L., Cornish, D. A., Pushparajah, I. P. S., Yu, J., Templeton, M. D. and Everett, K. R. 2010. Detection of Pseudomonas syringae pv. actinidiae using polymerase chain reaction (PCR) primers based on the 16S-23S rDNA intertranscribed spacer region and comparison with PCR primers based on other gene regions. Plant Pathol. 59:453-464. https://doi.org/10.1111/j.1365-3059.2010.02259.x
  25. Sarkar, S. F. and Guttman, D. S. 2004. Evolution of the core genome of Pseudomonas syringae, a highly clonal, endemic plant pathogen. Appl. Environ. Microbiol. 70:1999-2012. https://doi.org/10.1128/AEM.70.4.1999-2012.2004
  26. Sawada, H., Suzuki, F., Matsuda, I. and Saito, N. 1999. Phylogenetic analysis of Pseudomonas syringae pathovars suggests the horizontal gene transfer of argK and the evolutionary stability of hrp gene cluster. J. Mol. Evol. 49:627-644. https://doi.org/10.1007/PL00006584
  27. Scotichini, M. 1994. Occurrence of Pseudomonas syringae pv. actinidiae on kiwifuit in Italy. Plant Pathol. 43:1035-1038. https://doi.org/10.1111/j.1365-3059.1994.tb01654.x
  28. Scortichini, M., Marchesi, U. and Di Prospero, P. 2002. Genetic relatedness among Pseudomoas avellanae, P. syringae pv. theae and P. syringae pv. actinidiae, and their identification. Eur. J. Plant Pathol. 108:269-278. https://doi.org/10.1023/A:1015178104513
  29. Takikawa, Y., Serizawa, S., Ichikawa, T., Tsuyumu, S. and Goto, M. 1989. Pseudomonas syringae pv. actinidiae sp. nov., the causal bacterium of canker in kiwifruit in Japan. Ann. Phytopathol. Soc. Japan 55:437-444. https://doi.org/10.3186/jjphytopath.55.437
  30. Vanneste, J. L., Poliakoff, F., Audusseau, C., Cornish, D. A., Pailard, S., Rivoal, C. and Yu, J. 2011. First report of Pseudomonas syringae pv. actinidiae, the causal agent of bacterial canker of kiwifruit in France. Plant Dis. 95:1311.

Cited by

  1. Identification of Loci of Pseudomonas syringae pv. actinidiae Involved in Lipolytic Activity and Their Role in Colonization of Kiwifruit Leaves vol.107, pp.6, 2017, https://doi.org/10.1094/PHYTO-10-16-0360-R
  2. Pseudomonas syringae pv. actinidiae isolated from Actinidia chinensis Var. deliciosa in Northern Italy: genetic diversity and virulence 2018, https://doi.org/10.1007/s10658-017-1267-9
  3. Phenotypic Characteristics of Pseudomonas syringae pv. actinidiae Strains from Different Geographic Origins vol.50, pp.3, 2014, https://doi.org/10.7845/kjm.2014.4039
  4. Development of Specific Markers for Identification of Biovars 1 and 2 Strains of Pseudomonas syringae pv. actinidiae vol.32, pp.2, 2016, https://doi.org/10.5423/PPJ.NT.10.2015.0224
  5. Development of a Multiple Loci Variable Number of Tandem Repeats Analysis (MLVA) to Unravel the Intra-Pathovar Structure of Pseudomonas syringae pv. actinidiae Populations Worldwide vol.10, pp.8, 2015, https://doi.org/10.1371/journal.pone.0135310
  6. An ELISA method to identify the phytotoxic Pseudomonas syringae pv. actinidiae exopolysaccharides: A tool for rapid immunochemical detection of kiwifruit bacterial canker vol.19, 2017, https://doi.org/10.1016/j.phytol.2016.12.027
  7. in Fujian Province, China pp.0191-2917, 2018, https://doi.org/10.1094/PDIS-04-18-0618-PDN
  8. pp.1651-1913, 2018, https://doi.org/10.1080/09064710.2018.1526965
  9. Hypersensitive Response Negative Strains Detected from Kiwifruit Bleeding Sap Samples vol.108, pp.5, 2018, https://doi.org/10.1094/PHYTO-08-17-0278-R