DOI QR코드

DOI QR Code

Shear Resistance of CIP Anchors under Dynamic Loading: Unreinforced Anchor

선설치앵커의 동적 전단하중에 대한 저항강도: 비보강 앵커

  • Park, Yong Myung (Dept. of Civil Engineering, Pusan National University) ;
  • Kang, Moon Ki (Dept. of Civil Engineering, Pusan National University) ;
  • Kim, Dong Hyun (Dept. of Civil Engineering, Pusan National University) ;
  • Lee, Jong Han (Dept. of Civil Engineering, Daegu University) ;
  • Kang, Choong Hyun (School of Architectural and Civil Engineering, Kyungpook National University)
  • 박용명 (부산대학교, 토목공학과) ;
  • 강문기 (부산대학교, 토목공학과) ;
  • 김동현 (부산대학교, 토목공학과) ;
  • 이종한 (대구대학교, 토목공학과) ;
  • 강충현 (경북대학교, 건축토목공학부)
  • Received : 2013.09.13
  • Accepted : 2013.12.16
  • Published : 2014.02.27

Abstract

The Concrete Capacity Design(CCD) method has been used in the design of anchor since 2001 and Korean design code specify that concrete breakout capacity of CIP anchor under seismic load shall be taken as 75% of static capacity. In this study, an experimental study was performed to evaluate the concrete breakout capacity of unreinforced CIP anchors under dynamic shear force. For the purpose, three static and dynamic shear-loading tests were conducted using 20mm diameter anchors, respectively. The edge distance of 120mm was considered in the tests. In the dynamic tests, 15 cycles pulsating load with 1Hz speed was applied and the magnitude of loading step was increased until concrete breakout failure occurs. From the tests, the concrete breakout capacity under dynamic shear loading showed nearly same capacity by static loading.

2001년 이후 앵커의 설계는 Concrete Capacity Design(CCD) 방법이 적용되고 있는데, 국내 기준에서는 지진하중에 대한 콘크리트의 파열파괴강도를 정적 파괴강도의 75%로 제한하고 있다. 본 연구에서는 무근콘크리트에 매입된 선설치앵커의 동적 전단하중에 대한 콘크리트 파열파괴강도 평가하기 위한 실험을 수행하였다. 이를 위해 직경 20 mm의 앵커에 대해 정적 하중과 동적 편진하중에 대한 실험을 각각 3개의 시험체에 대해 수행하였으며, 앵커의 연단거리는 120 mm를 적용하였다. 동적 실험은 15 cycle의 편진하중을 1 Hz의 속도로 재하하였으며 반복하중단계의 크기를 키워가면서 최종 파괴 시까지 가력하였다. 실험으로부터 동적 전단하중에 의한 콘크리트 파열파괴강도는 정적하중에 의한 것과 거의 같은 파괴강도를 보였다.

Keywords

References

  1. ACI Committee 349 (1990) Code Requirements for Nuclear Safety Related Concrete Structures, ACI 349-90, Appendix B Steel Embedments, American Concrete Institute.
  2. Fuchs, W., Eligehausen, R., and Breen, J.E. (1995) Concrete Capacity Design (CCD) Approach for Fastenings to Concrete, ACI Structural Journal, Vol.92, No.6, pp.794-802.
  3. Muratli, H., Klingner, R.E., and Graves III, H.L. (2004) Breakout Capacity of Anchors in Concrete-Part 2: Shear, ACI Structural Journal, Vol.101, No.6, pp. 821-829.
  4. Eligehausen, R., Mallee, R., and Silva, J.F. (2006) Anchorage in Concrete Construction, Ernst & Sohn, Germany.
  5. ACI Committee 349 (2001) Code Requirements for Nuclear Safety Related Concrete Structures, ACI 349-01, Appendix B Anchoring to Concrete, American Concrete Institute.
  6. ACI Committee 318(2002) Building Code Requirements for Structural Concrete and Commentary, ACI 318-02, Appendix D Anchoring to Concrete, American Concrete Institute.
  7. 한국콘크리트학회(2007) 콘크리트구조설계기준해설, 부록 IV 콘크리트용 앵커. Korean Concrete Institute (2007) Concrete Structure Design Code and Commentary, Appendix IV Anchoring to Concrete (in Korean).
  8. ACI Committee 318 (2008) Building Code Requirements for Structural Concrete and Commentary, ACI 381-08, Appendix D Anchoring to Concrete, American Concrete Institute.
  9. 한국콘크리트학회(2012) 콘크리트구조기준해설, 부록 II 콘크리트용 앵커. Korean Concrete Institute (2012) Concrete Structure Design Code and Commentary, Appendix II Anchoring to Concrete (in Korean).
  10. ACI Committee 318 (2011) Building Code Requirements for Structural Concrete and Commentary, ACI 318-11, Appendix D Anchoring to Concrete, American Concrete Institute.
  11. ASTM E 488-96 (Reapproved 2003) Standard Test Methods for Strength of Anchors in Concrete and Masonry Elements, An American National Standards.
  12. ACI 355.2 (2000) Evaluating the Performance of Postinstalled Mechanical Anchors in Concrete, Reported by ACI Committee 355.
  13. CSA N287.2 (1998) Material Requirements for Concrete Containment Structures for CANDU Nuclear Power Plants, Canadian Standards Association, Rexdale, Ontario.
  14. Silva, J.F. (2001) Test Methods for Seismic Qualification of Post-Installed Anchors, Connections between Steel and Concrete, Proc. Int. Conference organized by University of Stuttgart, Co-sponsored by ACI, fib, IABSE, edited by R. Eligehausen, RILEM Publications S.A.R.L., pp.551-563.
  15. Gross, J.H., Klingner, R.E., and Graves III, H.L. (2001) Dynamic anchor behavior of single and double near-edge anchors loaded in shear, Connections between Steel and Concrete, Proc. Int. Conference organized by University of Stuttgart, Co-sponsored by ACI, fib, IABSE, edited by R. Eligehausen, RILEM Publications S.A.R.L., pp.498-508.
  16. Ghobarah, A., and Aziz, T.S. (2004) Seismic qualification of expansion anchors to Canadian nuclear standards, Nuclear Engineering and Design, Vol.228, pp.377-392. https://doi.org/10.1016/j.nucengdes.2003.06.020
  17. Petersen, D., Lin, Z., and Zhao, J. (2013) Behavior and Design of Cast-in-Place Anchors under Simulated Seismic Loading, Draft Final Report, Vol. I, Cyclic Behavior of Single Headed Anchors, Dept. of Civil Eng., University of Wisconsin, Milwaukee.
  18. 박용명, 전명희, 최명국, 김철환, 김인기(2012) 전단력을 받는 선설치 앵커볼트의 콘크리트 파열파괴강도 평가 연구, 한국강구조학회논문집, 제24권, 제2호, pp.207-215. Park, Y.M., Jeon, M.H., Choi, M.K., Kim, C.H., and Kim, I.G. (2012) A Study on the Concrete Breakout Capacity of CIP Anchor Bolts under Shear Loading, Journal of Korean Society of Steel Construction, KSSC, Vol.24, No.2, pp.207-215 (in Korean). https://doi.org/10.7781/kjoss.2012.24.2.207

Cited by

  1. Shear Resistance of CIP Anchors under Dynamic Loading: Reinforced Anchor vol.26, pp.1, 2014, https://doi.org/10.7781/kjoss.2014.26.1.021
  2. A Study on the Pull-out Strength of Bond Type Anchors vol.30, pp.2, 2018, https://doi.org/10.7781/kjoss.2018.30.2.105
  3. 균열콘크리트에 매입된 선설치앵커의 정적 전단하중에 대한 저항강도 vol.27, pp.1, 2015, https://doi.org/10.7781/kjoss.2015.27.1.087
  4. 지진모의실험에 의한 비균열 및 균열콘크리트에 매입된 비보강 선설치앵커의 전단 저항강도 평가 vol.27, pp.3, 2014, https://doi.org/10.7781/kjoss.2015.27.3.347